期刊文献+
共找到2,505篇文章
< 1 2 126 >
每页显示 20 50 100
Reliability evaluation of IGBT power module on electric vehicle using big data 被引量:1
1
作者 Li Liu Lei Tang +5 位作者 Huaping Jiang Fanyi Wei Zonghua Li Changhong Du Qianlei Peng Guocheng Lu 《Journal of Semiconductors》 EI CAS CSCD 2024年第5期50-60,共11页
There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction... There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction temperature estimation approach based on neural network without additional cost is proposed and the lifetime calculation for IGBT using electric vehicle big data is performed.The direct current(DC)voltage,operation current,switching frequency,negative thermal coefficient thermistor(NTC)temperature and IGBT lifetime are inputs.And the junction temperature(T_(j))is output.With the rain flow counting method,the classified irregular temperatures are brought into the life model for the failure cycles.The fatigue accumulation method is then used to calculate the IGBT lifetime.To solve the limited computational and storage resources of electric vehicle controllers,the operation of IGBT lifetime calculation is running on a big data platform.The lifetime is then transmitted wirelessly to electric vehicles as input for neural network.Thus the junction temperature of IGBT under long-term operating conditions can be accurately estimated.A test platform of the motor controller combined with the vehicle big data server is built for the IGBT accelerated aging test.Subsequently,the IGBT lifetime predictions are derived from the junction temperature estimation by the neural network method and the thermal network method.The experiment shows that the lifetime prediction based on a neural network with big data demonstrates a higher accuracy than that of the thermal network,which improves the reliability evaluation of system. 展开更多
关键词 IGBT junction temperature neural network electric vehicles big data
下载PDF
FADSF:A Data Sharing Model for Intelligent Connected Vehicles Based on Blockchain Technology
2
作者 Yan Sun Caiyun Liu +1 位作者 Jun Li Yitong Liu 《Computers, Materials & Continua》 SCIE EI 2024年第8期2351-2362,共12页
With the development of technology,the connected vehicle has been upgraded from a traditional transport vehicle to an information terminal and energy storage terminal.The data of ICV(intelligent connected vehicles)is ... With the development of technology,the connected vehicle has been upgraded from a traditional transport vehicle to an information terminal and energy storage terminal.The data of ICV(intelligent connected vehicles)is the key to organically maximizing their efficiency.However,in the context of increasingly strict global data security supervision and compliance,numerous problems,including complex types of connected vehicle data,poor data collaboration between the IT(information technology)domain and OT(operation technology)domain,different data format standards,lack of shared trust sources,difficulty in ensuring the quality of shared data,lack of data control rights,as well as difficulty in defining data ownership,make vehicle data sharing face a lot of problems,and data islands are widespread.This study proposes FADSF(Fuzzy Anonymous Data Share Frame),an automobile data sharing scheme based on blockchain.The data holder publishes the shared data information and forms the corresponding label storage on the blockchain.The data demander browses the data directory information to select and purchase data assets and verify them.The data demander selects and purchases data assets and verifies them by browsing the data directory information.Meanwhile,this paper designs a data structure Data Discrimination Bloom Filter(DDBF),making complaints about illegal data.When the number of data complaints reaches the threshold,the audit traceability contract is triggered to punish the illegal data publisher,aiming to improve the data quality and maintain a good data sharing ecology.In this paper,based on Ethereum,the above scheme is tested to demonstrate its feasibility,efficiency and security. 展开更多
关键词 Blockchain connected vehicles data sharing smart contracts credible traceability
下载PDF
Development of vehicle-recognition method on water surfaces using LiDAR data:SPD^(2)(spherically stratified point projection with diameter and distance)
3
作者 Eon-ho Lee Hyeon Jun Jeon +2 位作者 Jinwoo Choi Hyun-Taek Choi Sejin Lee 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期95-104,共10页
Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface ... Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework. 展开更多
关键词 Object classification Clustering 3D point cloud data LiDAR(light detection and ranging) Surface vehicle
下载PDF
Analysis of Safety Assessment and Testing of Heavy Traffic Vehicles on Old Bridges Without Data
4
作者 Qing Yang Jiang Feng 《Journal of World Architecture》 2024年第1期35-39,共5页
This article presents a real-life project that aimed to evaluate the safety of traffic vehicles on old bridges without any prior data.The project involved various safety inspections,including conventional,static,and d... This article presents a real-life project that aimed to evaluate the safety of traffic vehicles on old bridges without any prior data.The project involved various safety inspections,including conventional,static,and dynamic load inspections and safety assessments.After conducting these tests,it was concluded that the structure of the old bridge is relatively safe,with only a few bumps.The bridge could function normally following appropriate treatment.The analysis provides valuable insights into the assessment of the quality and safety of such bridges to ensure the safe driving of heavy vehicles. 展开更多
关键词 Old bridge Absence of data Heavy vehicles Safety inspection Safety assessment
下载PDF
Federated Learning with Blockchain for Privacy-Preserving Data Sharing in Internet of Vehicles 被引量:3
5
作者 Wenxian Jiang Mengjuan Chen Jun Tao 《China Communications》 SCIE CSCD 2023年第3期69-85,共17页
Data sharing technology in Internet of Vehicles(Io V)has attracted great research interest with the goal of realizing intelligent transportation and traffic management.Meanwhile,the main concerns have been raised abou... Data sharing technology in Internet of Vehicles(Io V)has attracted great research interest with the goal of realizing intelligent transportation and traffic management.Meanwhile,the main concerns have been raised about the security and privacy of vehicle data.The mobility and real-time characteristics of vehicle data make data sharing more difficult in Io V.The emergence of blockchain and federated learning brings new directions.In this paper,a data-sharing model that combines blockchain and federated learning is proposed to solve the security and privacy problems of data sharing in Io V.First,we use federated learning to share data instead of exposing actual data and propose an adaptive differential privacy scheme to further balance the privacy and availability of data.Then,we integrate the verification scheme into the consensus process,so that the consensus computation can filter out low-quality models.Experimental data shows that our data-sharing model can better balance the relationship between data availability and privacy,and also has enhanced security. 展开更多
关键词 blockchain federated learning PRIVACY data sharing Internet of vehicles
下载PDF
Design and Implementation of a Battery Big Data Platform Through Intelligent Connected Electric Vehicles 被引量:1
6
作者 Rui Xiong Baoqiang Zhu +2 位作者 Kui Zhang Yanzhou Duan Fengchun Sun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期291-301,共11页
The development of a battery management algorithm is highly dependent on high-quality battery operation data,especially the data in extreme conditions such as low temperatures.The data in faults are also essential for... The development of a battery management algorithm is highly dependent on high-quality battery operation data,especially the data in extreme conditions such as low temperatures.The data in faults are also essential for failure and safety management research.This study developed a battery big data platform to realize vehicle operation,energy interaction and data management.First,we developed an electric vehicle with vehicle navigation and position detection and designed an environmental cabin that allows the vehicle to operate autonomously.Second,charging and heating systems based on wireless energy transfer were developed and equipped on the vehicle to investigate optimal charging and heating methods of the batteries in the vehicle.Third,the data transmission network was designed,a real-time monitoring interface was developed,and the self-developed battery management system was used to measure,collect,upload,and store battery operation data in real time.Finally,experimental validation was performed on the platform.Results demonstrate the efficiency and reliability of the platform.Battery state of charge estimation is used as an example to illustrate the availability of battery operation data. 展开更多
关键词 Intelligent connected electric vehicle BATTERY Operation data State estimation Wireless energy transfer
下载PDF
Evaluation of Arterial Signal Coordination with Commercial Connected Vehicle Data: Empirical Traffic Flow Visualization and Performance Measurement
7
作者 Shoaib Mahmud Christopher M. Day 《Journal of Transportation Technologies》 2023年第3期327-352,共26页
Emerging connected vehicle (CV) data sets have recently become commercially available, enabling analysts to develop a variety of powerful performance measures without deploying any field infrastructure. This paper pre... Emerging connected vehicle (CV) data sets have recently become commercially available, enabling analysts to develop a variety of powerful performance measures without deploying any field infrastructure. This paper presents several tools using CV data to evaluate traffic progression quality along a signalized corridor. These include both performance measures for high-level analysis as well as visualizations to examine details of the coordinated operation. With the use of CV data, it is possible to assess not only the movement of traffic on the corridor but also to consider its origin-destination (O-D) path through the corridor. Results for the real-world operation of an eight-intersection signalized arterial are presented. A series of high-level performance measures are used to evaluate overall performance by time of day, with differing results by metric. Next, the details of the operation are examined with the use of two visualization tools: a cyclic time-space diagram (TSD) and an empirical platoon progression diagram (PPD). Comparing flow visualizations developed with different included O-D paths reveals several features, such as the presence of secondary and tertiary platoons on certain sections that cannot be seen when only end-to-end journeys are included. In addition, speed heat maps are generated, providing both speed performance along the corridor and locations and the extent of the queue. The proposed visualization tools portray the corridor’s performance holistically instead of combining individual signal performance metrics. The techniques exhibited in this study are compelling for identifying locations where engineering solutions such as access management or timing plan change are required. The recent progress in infrastructure-free sensing technology has significantly increased the scope of CV data-based traffic management systems, enhancing the significance of this study. The study demonstrates the utility of CV trajectory data for obtaining high-level details of the corridor performance as well as drilling down into the minute specifics. 展开更多
关键词 Traffic Signal Performance Measures vehicle Trajectory data Connected vehicle data
下载PDF
Comparison of Estimated Cycle Split Failures from High-Resolution Controller Event and Connected Vehicle Trajectory Data
8
作者 Saumabha Gayen Enrique D. Saldivar-Carranza Darcy M. Bullock 《Journal of Transportation Technologies》 2023年第4期689-707,共19页
Current traffic signal split failure (SF) estimations derived from high-resolution controller event data rely on detector occupancy ratios and preset thresholds. The reliability of these techniques depends on the sele... Current traffic signal split failure (SF) estimations derived from high-resolution controller event data rely on detector occupancy ratios and preset thresholds. The reliability of these techniques depends on the selected thresholds, detector lengths, and vehicle arrival patterns. Connected vehicle (CV) trajectory data can more definitively show when a vehicle split fails by evaluating the number of stops it experiences as it approaches an intersection, but it has limited market penetration. This paper compares cycle-by-cycle SF estimations from both high-resolution controller event data and CV trajectory data, and evaluates the effect of data aggregation on SF agreement between the two techniques. Results indicate that, in general, split failure events identified from CV data are likely to also be captured from high-resolution data, but split failure events identified from high-resolution data are less likely to be captured from CV data. This is due to the CV market penetration rate (MPR) of ~5% being too low to capture representative data for every controller cycle. However, data aggregation can increase the ratio in which CV data captures split failure events. For example, day-of-week data aggregation increased the percentage of split failures identified with high-resolution data that were also captured with CV data from 35% to 56%. It is recommended that aggregated CV data be used to estimate SF as it provides conservative and actionable results without the limitations of intersection and detector configuration. As the CV MPR increases, the accuracy of CV-based SF estimation will also improve. 展开更多
关键词 Split Failure Connected vehicle Detector Traffic Signal Performance Measures Trajectory data
下载PDF
LSTM-based lane change prediction using Waymo open motion dataset: The role of vehicle operating space
9
作者 Xing Fu Jun Liu +1 位作者 Zhitong Huang Alex Hainenand Asad J.Khattak 《Digital Transportation and Safety》 2023年第2期112-123,共12页
Lane change prediction is critical for crash avoidance but challenging as it requires the understanding of the instantaneous driving environment.With cutting-edge artificial intelligence and sensing technologies,auton... Lane change prediction is critical for crash avoidance but challenging as it requires the understanding of the instantaneous driving environment.With cutting-edge artificial intelligence and sensing technologies,autonomous vehicles(AVs)are expected to have exceptional perception systems to capture instantaneously their driving environments for predicting lane changes.By exploring the Waymo open motion dataset,this study proposes a framework to explore autonomous driving data and investigate lane change behaviors.In the framework,this study develops a Long Short-Term Memory(LSTM)model to predict lane changing behaviors.The concept of Vehicle Operating Space(VOS)is introduced to quantify a vehicle's instantaneous driving environment as an important indicator used to predict vehicle lane changes.To examine the robustness of the model,a series of sensitivity analysis are conducted by varying the feature selection,prediction horizon,and training data balancing ratios.The test results show that including VOS into modeling can speed up the loss decay in the training process and lead to higher accuracy and recall for predicting lane-change behaviors.This study offers an example along with a methodological framework for transportation researchers to use emerging autonomous driving data to investigate driving behaviors and traffic environments. 展开更多
关键词 Long Short-Term Memory Lane change prediction vehicle Operating Space Waymo open data Sensitivity analysis
下载PDF
Data synchronization in IMU/GPS integrated measurement system of vehicle motion parameters 被引量:5
10
作者 刘广孚 张为公 +1 位作者 李旭 郭亮 《Journal of Southeast University(English Edition)》 EI CAS 2006年第2期200-203,共4页
To realize the data synchronization between the inertial measurement unit (IMU) and the global positioning system (GPS), the synchronization technology in the IMU/GPS integrated measurement system of vehicle motio... To realize the data synchronization between the inertial measurement unit (IMU) and the global positioning system (GPS), the synchronization technology in the IMU/GPS integrated measurement system of vehicle motion parameters is studied. According to the characteristics of the output signals of the IMU and the GPS, without the IMU synchronization signal, the synchronization circuit based on CPLD is designed and developed, which need not alter the configurations of the IMU and GPS. Experiments of measuring vehicle motion parameters, which rely on the synchronization circuit to realize IMU/GPS data synchronization, are made. The driving routes in experiments comprise a curve and a straight line. Experimental results show that the designed circuit can accurately measure the synchronization time difference and the IMU period, and can effectively solve the data synchronization in IMU/GPS integration. Furthermore, the IMU/GPS integrated measurement system based on the synchronization circuit can measure and calculate many vehicle motion parameters in high frequency mode. 展开更多
关键词 vehicle movement performance test IMU/GPS data synchronization
下载PDF
Bus transit travel time reliability evaluation based on automatic vehicle location data 被引量:4
11
作者 严亚丹 过秀成 +2 位作者 李岩 孔哲 何明 《Journal of Southeast University(English Edition)》 EI CAS 2012年第1期100-105,共6页
In order to provide important parameters for schedule designing, decision-making bases for transit operation management and references for passengers traveling by bus, bus transit travel time reliability is analyzed a... In order to provide important parameters for schedule designing, decision-making bases for transit operation management and references for passengers traveling by bus, bus transit travel time reliability is analyzed and evaluated based on automatic vehicle location (AVL) data. Based on the statistical analysis of the bus transit travel time, six indices including the coefficient of variance, the width of travel time distribution, the mean commercial speed, the congestion frequency, the planning time index and the buffer time index are proposed. Moreover, a framework for evaluating bus transit travel time reliability is constructed. Finally, a case study on a certain bus route in Suzhou is conducted. Results show that the proposed evaluation index system is simple and intuitive, and it can effectively reflect the efficiency and stability of bus operations. And a distinguishing feature of bus transit travel time reliability is the temporal pattern. It varies across different time periods. 展开更多
关键词 bus transit travel time reliability evaluation andanalysis automatic vehicle location data statistical analysis
下载PDF
Embedded Data Acquisition in Vehicle Electronic System 被引量:3
12
作者 王建群 陈铁 《Journal of Beijing Institute of Technology》 EI CAS 2000年第4期403-407,共5页
The embedded data acquistition technology in vehicle electronic system was discussed. This technology adopts the parallel working mode, gets vehicle electronic system data by communication. This technology can provide... The embedded data acquistition technology in vehicle electronic system was discussed. This technology adopts the parallel working mode, gets vehicle electronic system data by communication. This technology can provide us a lot of information on the electronic control unit, is very useful for the development of the vehicle electronic system, and can be used in diagnosis. The key points to this technology are the timer interrupt, A/D interrupt, communication interrupt and real time operation. This technology has been validated by the application in the electronic control mechanism transmission shifting system of the tank. 展开更多
关键词 embedded data acquisition INTERRUPT COMMUNICATION vehicle
下载PDF
Coati Optimization-Based Energy Efficient Routing Protocol for Unmanned Aerial Vehicle Communication 被引量:1
13
作者 Hanan Abdullah Mengash Hamed Alqahtani +5 位作者 Mohammed Maray Mohamed K.Nour Radwa Marzouk Mohammed Abdullah Al-Hagery Heba Mohsen Mesfer Al Duhayyim 《Computers, Materials & Continua》 SCIE EI 2023年第6期4805-4820,共16页
With the flexible deployment and high mobility of Unmanned Aerial Vehicles(UAVs)in an open environment,they have generated con-siderable attention in military and civil applications intending to enable ubiquitous conn... With the flexible deployment and high mobility of Unmanned Aerial Vehicles(UAVs)in an open environment,they have generated con-siderable attention in military and civil applications intending to enable ubiquitous connectivity and foster agile communications.The difficulty stems from features other than mobile ad-hoc network(MANET),namely aerial mobility in three-dimensional space and often changing topology.In the UAV network,a single node serves as a forwarding,transmitting,and receiving node at the same time.Typically,the communication path is multi-hop,and routing significantly affects the network’s performance.A lot of effort should be invested in performance analysis for selecting the optimum routing system.With this motivation,this study modelled a new Coati Optimization Algorithm-based Energy-Efficient Routing Process for Unmanned Aerial Vehicle Communication(COAER-UAVC)technique.The presented COAER-UAVC technique establishes effective routes for communication between the UAVs.It is primarily based on the coati characteristics in nature:if attacking and hunting iguanas and escaping from predators.Besides,the presented COAER-UAVC technique concentrates on the design of fitness functions to minimize energy utilization and communication delay.A varied group of simulations was performed to depict the optimum performance of the COAER-UAVC system.The experimental results verified that the COAER-UAVC technique had assured improved performance over other approaches. 展开更多
关键词 Artificial intelligence unmanned aerial vehicle data communication routing protocol energy efficiency
下载PDF
Internet of Vehicles in Big Data Era 被引量:22
14
作者 Wenchao Xu Haibo Zhou +4 位作者 Nan Cheng Feng Lyu Weisen Shi Jiayin Chen Xuemin (Sherman) Shen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第1期19-35,共17页
As the rapid development of automotive telematics,modern vehicles are expected to be connected through heterogeneous radio access technologies and are able to exchange massive information with their surrounding enviro... As the rapid development of automotive telematics,modern vehicles are expected to be connected through heterogeneous radio access technologies and are able to exchange massive information with their surrounding environment. By significantly expanding the network scale and conducting both real-time and long-term information processing, the traditional Vehicular AdHoc Networks(VANETs) are evolving to the Internet of Vehicles(Io V), which promises efficient and intelligent prospect for the future transportation system. On the other hand, vehicles are not only consuming but also generating a huge amount and enormous types of data, which is referred to as Big Data. In this article, we first investigate the relationship between Io V and big data in vehicular environment, mainly on how Io V supports the transmission, storage, computing of the big data, and how Io V benefits from big data in terms of Io V characterization,performance evaluation and big data assisted communication protocol design. We then investigate the application of Io V big data in autonomous vehicles. Finally, the emerging issues of the big data enabled Io V are discussed. 展开更多
关键词 Autonomous vehicles big data big data applications data communication IoV vehicular networks
下载PDF
A Federated Bidirectional Connection Broad Learning Scheme for Secure Data Sharing in Internet of Vehicles 被引量:6
15
作者 Xiaoming Yuan Jiahui Chen +2 位作者 Ning Zhang Xiaojie Fang Didi Liu 《China Communications》 SCIE CSCD 2021年第7期117-133,共17页
Data sharing in Internet of Vehicles(IoV)makes it possible to provide personalized services for users by service providers in Intelligent Transportation Systems(ITS).As IoV is a multi-user mobile scenario,the reliabil... Data sharing in Internet of Vehicles(IoV)makes it possible to provide personalized services for users by service providers in Intelligent Transportation Systems(ITS).As IoV is a multi-user mobile scenario,the reliability and efficiency of data sharing need to be further enhanced.Federated learning allows the server to exchange parameters without obtaining private data from clients so that the privacy is protected.Broad learning system is a novel artificial intelligence technology that can improve training efficiency of data set.Thus,we propose a federated bidirectional connection broad learning scheme(FeBBLS)to solve the data sharing issues.Firstly,we adopt the bidirectional connection broad learning system(BiBLS)model to train data set in vehicular nodes.The server aggregates the collected parameters of BiBLS from vehicular nodes through the federated broad learning system(FedBLS)algorithm.Moreover,we propose a clustering FedBLS algorithm to offload the data sharing into clusters for improving the aggregation capability of the model.Some simulation results show our scheme can improve the efficiency and prediction accuracy of data sharing and protect the privacy of data sharing. 展开更多
关键词 federated learning broad learning system deep learning Internet of vehicles data privacy
下载PDF
Deep Learning Based Data Fusion for Sensor Fault Diagnosis and Tolerance in Autonomous Vehicles 被引量:5
16
作者 Huihui Pan Weichao Sun +1 位作者 Qiming Sun Huijun Gao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期158-168,共11页
Environmental perception is one of the key technologies to realize autonomous vehicles.Autonomous vehicles are often equipped with multiple sensors to form a multi-source environmental perception system.Those sensors ... Environmental perception is one of the key technologies to realize autonomous vehicles.Autonomous vehicles are often equipped with multiple sensors to form a multi-source environmental perception system.Those sensors are very sensitive to light or background conditions,which will introduce a variety of global and local fault signals that bring great safety risks to autonomous driving system during long-term running.In this paper,a real-time data fusion network with fault diagnosis and fault tolerance mechanism is designed.By introducing prior features to realize the lightweight network,the features of the input data can be extracted in real time.A new sensor reliability evaluation method is proposed by calculating the global and local confidence of sensors.Through the temporal and spatial correlation between sensor data,the sensor redundancy is utilized to diagnose the local and global confidence level of sensor data in real time,eliminate the fault data,and ensure the accuracy and reliability of data fusion.Experiments show that the network achieves state-of-the-art results in speed and accuracy,and can accurately detect the location of the target when some sensors are out of focus or out of order.The fusion framework proposed in this paper is proved to be effective for intelligent vehicles in terms of real-time performance and reliability. 展开更多
关键词 Autonomous vehicles Fault diagnosis and tolerance Object detection data fusion
下载PDF
Cognitive Granular-Based Path Planning and Tracking for Intelligent Vehicle with Multi-Segment Bezier Curve Stitching
17
作者 Xudong Wang Xueshuai Qin +1 位作者 Huiyan Zhang Luis Ismael Minchala 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期385-400,共16页
Unmanned vehicles are currently facing many difficulties and challenges in improving safety performance when running in complex urban road traffic environments,such as low intelligence and poor comfort perfor-mance in... Unmanned vehicles are currently facing many difficulties and challenges in improving safety performance when running in complex urban road traffic environments,such as low intelligence and poor comfort perfor-mance in the driving process.The real-time performance of vehicles and the comfort requirements of passengers in path planning and tracking control of unmanned vehicles have attracted more and more attentions.In this paper,in order to improve the real-time performance of the autonomous vehicle planning module and the comfort requirements of passengers that a local granular-based path planning method and tracking control based on multi-segment Bezier curve splicing and model predictive control theory are pro-posed.Especially,the maximum trajectory curvature satisfying ride comfort is regarded as an important constraint condition,and the corresponding curvature threshold is utilized to calculate the control points of Bezier curve.By using low-order interpolation curve splicing,the planning computation is reduced,and the real-time performance of planning is improved,com-pared with one-segment curve fitting method.Furthermore,the comfort performance of the planned path is reflected intuitively by the curvature information of the path.Finally,the effectiveness of the proposed control method is verified by the co-simulation platform built by MATLAB/Simulink and Carsim.The simulation results show that the path tracking effect of multi-segment Bezier curve fitting is better than that of high-order curve planning in terms of real-time performance and comfort. 展开更多
关键词 Intelligent vehicle data analysis techniques path planning tracking control
下载PDF
SDN-Enabled Content Dissemination Scheme for the Internet of Vehicles
18
作者 Abida Sharif Muhammad Imran Sharif +5 位作者 Muhammad Attique Khan Nisar Ali Abdullah Alqahtani Majed Alhaisoni Ye Jin Kim Byoungchol Chang 《Computers, Materials & Continua》 SCIE EI 2023年第5期2383-2396,共14页
The content-centric networking(CCN)architecture allows access to the content through name,instead of the physical location where the content is stored,which makes it a more robust and flexible content-based architectu... The content-centric networking(CCN)architecture allows access to the content through name,instead of the physical location where the content is stored,which makes it a more robust and flexible content-based architecture.Nevertheless,in CCN,the broadcast nature of vehicles on the Internet of Vehicles(IoV)results in latency and network congestion.The IoVbased content distribution is an emerging concept in which all the vehicles are connected via the internet.Due to the high mobility of vehicles,however,IoV applications have different network requirements that differ from those of many other networks,posing new challenges.Considering this,a novel strategy mediator framework is presented in this paper for managing the network resources efficiently.Software-defined network(SDN)controller is deployed for improving the routing flexibility and facilitating in the interinteroperability of heterogeneous devices within the network.Due to the limited memory of edge devices,the delectable bloom filters are used for caching and storage.Finally,the proposed scheme is compared with the existing variants for validating its effectiveness. 展开更多
关键词 Internet of vehicles(IOV) content dissemination multi mediator data traffic management
下载PDF
Longitudinal Performance Assessment of Traffic Signal System Impacted by Long-Term Interstate Construction Diversion Using Connected Vehicle Data 被引量:6
19
作者 Enrique D. Saldivar-Carranza Margaret Hunter +2 位作者 Howell Li Jijo Mathew Darcy M. Bullock 《Journal of Transportation Technologies》 2021年第4期644-659,共16页
Local arterials can be significantly impacted by diversions from adjacent work zones. These diversions often occur on unofficial detour routes due to guidance received on personal navigation devices. Often, these rout... Local arterials can be significantly impacted by diversions from adjacent work zones. These diversions often occur on unofficial detour routes due to guidance received on personal navigation devices. Often, these routes do not have sufficien<span style="font-family:Verdana;">t sensing or communication equipment to obtain infrastructure-based tra</span><span style="font-family:Verdana;">ffic signal performance measures, so other data sources are required to identify locations being significantly affected by diversions. This paper examines the network impact caused by the start of an 18-month closure of the I-65/70 interchange (North Split), which usually serves approximately 214,000 vehicles per day in Indianapolis, IN. In anticipation of some proportion of the public diverting from official detour routes to local streets, a connected vehicle monitoring program was established to provide daily performances measures for over 100 intersections in the area without the need for vehicle sensing equipment. This study reports on 13 of the most impacted signals on an alternative arterial to identify locations and time of day where operations are most degraded, so that decision makers have quantitative information to make informed adjustments to the system. Individual vehicle movements at the studied locations are analyzed to estimate changes in volume, split failures, downstream blockage, arrivals on green, and travel times. Over 130,000 trajectories were analyzed in an 11-week period. Weekly afternoon peak period volumes increased by approximately 455%, split failures increased 3%, downstream blockage increased 10%, arrivals on green decreased 16%, and travel time increase 74%. The analysis performed in this paper will serve as a framework for any agency that wants to assess traffic signal performance at hundreds of locations with little or no existing sensing or communication infrastructure to prioritize tactical retiming and/or longer-term infrastructure investments.</span> 展开更多
关键词 Traffic Signal Performance Measures Connected vehicle Longitudinal Study Big data
下载PDF
A Spatio-temporal Data Model for Road Network in Data Center Based on Incremental Updating in Vehicle Navigation System 被引量:1
20
作者 WU Huisheng LIU Zhaoli +1 位作者 ZHANG Shuwen ZUO Xiuling 《Chinese Geographical Science》 SCIE CSCD 2011年第3期346-353,共8页
The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation sy... The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation system is in charge of storing incremental data,and the spatio-temporal data model for storing incremental data does affect the efficiency of the response of the data center to the requirements of incremental data from the vehicle terminal.According to the analysis on the shortcomings of several typical spatio-temporal data models used in the data center and based on the base map with overlay model,the reverse map with overlay model (RMOM) was put forward for the data center to make rapid response to incremental data request.RMOM supports the data center to store not only the current complete road network data,but also the overlays of incremental data from the time when each road network changed to the current moment.Moreover,the storage mechanism and index structure of the incremental data were designed,and the implementation algorithm of RMOM was developed.Taking navigational road network in Guangzhou City as an example,the simulation test was conducted to validate the efficiency of RMOM.Results show that the navigation database in the data center can response to the requirements of incremental data by only one query with RMOM,and costs less time.Compared with the base map with overlay model,the data center does not need to temporarily overlay incremental data with RMOM,so time-consuming of response is significantly reduced.RMOM greatly improves the efficiency of response and provides strong support for the real-time situation of navigational road network. 展开更多
关键词 spatio-temporal data model reverse map with overlay model road network incremental updating vehicle navigation system data center vehicle terminal
下载PDF
上一页 1 2 126 下一页 到第
使用帮助 返回顶部