This article describes a method of vehicle dynamics estimation for impending rollover detection. We estimate vehicle dynamic states in presence of the road bank angle as a disturbance in the vehicle model using a robu...This article describes a method of vehicle dynamics estimation for impending rollover detection. We estimate vehicle dynamic states in presence of the road bank angle as a disturbance in the vehicle model using a robust observer. The estimated roll angle and roll rate are used to compute the rollover index which is based on the prediction of the lateral load transfer. In order to anticipate rollover detection, a new method is proposed to compute the time to rollover(TTR) using the load transfer ratio(LTR). The nonlinear model, deduced from the vehicle lateral and roll dynamics, is represented by a Takagi-Sugeno(T-S) fuzzy model. This representation is used to account for the nonlinearities of lateral cornering forces. The proposed T-S observer is designed with unmeasurable premise variables to cater for non-availability of the slip angles measurement. The proposed approach is evaluated using Car Sim simulator under different driving scenarios. Simulation results show good efficiency of the proposed T-S observer and the rollover detection method.展开更多
Rollover of commercial heavy vehicles can cause enormous economic losses and fatalities.It is easier for such vehicles to rollover if the driver’s steering frequency is close to the critical frequency of the vehicle...Rollover of commercial heavy vehicles can cause enormous economic losses and fatalities.It is easier for such vehicles to rollover if the driver’s steering frequency is close to the critical frequency of the vehicle’s roll motion;however,the critical roll frequency has rarely been investigated.In this study,the second-order transfer function between the steering input and roll angle was developed to calculate the critical frequency of the vehicle’s roll motion.The simulated spectrum and transfer function were then used to dynamically predict the peak lateral load transfer ratio.Laboratory experiments were conducted using a scaled vehicle to verify the critical roll frequency.The results suggest that the peak value of the lateral load transfer ratio during steering can be accurately determined from the driver’s input,and the critical roll frequency has a dominant effect on the dynamic rollover of heavy vehicles.展开更多
基金supported by the"Conseil Régional de Picardie"and the European Regional Development Fund within the framework of the project"SEDVAC"
文摘This article describes a method of vehicle dynamics estimation for impending rollover detection. We estimate vehicle dynamic states in presence of the road bank angle as a disturbance in the vehicle model using a robust observer. The estimated roll angle and roll rate are used to compute the rollover index which is based on the prediction of the lateral load transfer. In order to anticipate rollover detection, a new method is proposed to compute the time to rollover(TTR) using the load transfer ratio(LTR). The nonlinear model, deduced from the vehicle lateral and roll dynamics, is represented by a Takagi-Sugeno(T-S) fuzzy model. This representation is used to account for the nonlinearities of lateral cornering forces. The proposed T-S observer is designed with unmeasurable premise variables to cater for non-availability of the slip angles measurement. The proposed approach is evaluated using Car Sim simulator under different driving scenarios. Simulation results show good efficiency of the proposed T-S observer and the rollover detection method.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant 51905483.
文摘Rollover of commercial heavy vehicles can cause enormous economic losses and fatalities.It is easier for such vehicles to rollover if the driver’s steering frequency is close to the critical frequency of the vehicle’s roll motion;however,the critical roll frequency has rarely been investigated.In this study,the second-order transfer function between the steering input and roll angle was developed to calculate the critical frequency of the vehicle’s roll motion.The simulated spectrum and transfer function were then used to dynamically predict the peak lateral load transfer ratio.Laboratory experiments were conducted using a scaled vehicle to verify the critical roll frequency.The results suggest that the peak value of the lateral load transfer ratio during steering can be accurately determined from the driver’s input,and the critical roll frequency has a dominant effect on the dynamic rollover of heavy vehicles.