A real-time vehicle tracking method is proposed for trattlC monitoring system at roau mte^cc- tions, and the vehicle tracking module consists of an initialization stage and a tracking stage. Li- cense plate location b...A real-time vehicle tracking method is proposed for trattlC monitoring system at roau mte^cc- tions, and the vehicle tracking module consists of an initialization stage and a tracking stage. Li- cense plate location based on edge density and color analysis is used to detect the license plate re- gion for tracking initialization. In the tracking stage, covariance matching is employed to track the license plate. Genetic algorithm is used to reduce the computational cost. Real-time image tracking of multi-lane vehicles is achieved. In the experiment, test videos are recorded in advance by record- ers of actual E-police systems erage false detection rate and at several different city intersections. In the tracking module, the av- missed plates rate are 1.19%, and 1.72%, respectively.展开更多
To track the vehicles under occlusion, a vehicle tracking algorithm based on blocks is proposed. The target vehicle is divided into several blocks of uniform size, in which the edge block can overlap its neighboring b...To track the vehicles under occlusion, a vehicle tracking algorithm based on blocks is proposed. The target vehicle is divided into several blocks of uniform size, in which the edge block can overlap its neighboring blocks. All the blocks' motion vectors are estimated, and the noise motion vectors are detected and adjusted to decrease the error of motion vector estimation. Then, by moving the blocks based on the adjusted motion vectors, the vehicle is tracked. Aiming at the occlusion between vehicles, a Markov random field is established to describe the relationship between the blocks in the blocked regions. The neighborhood of blocks is defined using the Euclidean distance. An energy function is defined based on the blocks' histograms and optimized by the simulated annealing algorithm to segment the occlusion region. Experimental results demonstrate that the proposed algorithm can track vehicles under occlusion accurately.展开更多
Zimbabwe has witnessed the evolution of Information Communication Technology (ICT). The vehicle population soared to above 1.2 million hence rendering the Transport and Insurance domains complex. Therefore, there is a...Zimbabwe has witnessed the evolution of Information Communication Technology (ICT). The vehicle population soared to above 1.2 million hence rendering the Transport and Insurance domains complex. Therefore, there is a need to look at ways that can augment conventional Vehicular Management Information Systems (VMIS) in transforming business processes through Telematics. This paper aims to contextualise the role that telematics can play in transforming the Insurance Ecosystem in Zimbabwe. The main objective was to investigate the integration of Usage-Based Insurance (UBI) with vehicle tracking solutions provided by technology companies like Econet Wireless in Zimbabwe, aiming to align customer billing with individual risk profiles and enhance the synergy between technology and insurance service providers in the motor insurance ecosystem. A triangulation through structured interviews, questionnaires, and literature review, supported by Information Systems Analysis and Design techniques was conducted. The study adopted a case study approach, qualitatively analyzing the complexities of the Telematics insurance ecosystem in Zimbabwe, informed by the TOGAF framework. A case-study approach was applied to derive themes whilst applying within and cross-case analysis. Data was collected using questionnaires, and interviews. The findings of the research clearly show the importance of Telematics in modern-day insurance and the positive relationship between technology and insurance business performance. The study, therefore revealed how UBI can incentivize positive driver behavior, potentially reducing insurance premiums for safe drivers and lowering the incidence of claims against insurance companies. Future work can be done on studying the role of Telematics in combating highway crime and corruption.展开更多
A neuron proportion integration (PI) control strategy for semi-active suspension system of tracked vehicle was proposed based on its unique structure and the multiple and complex environment of the driving traffic. An...A neuron proportion integration (PI) control strategy for semi-active suspension system of tracked vehicle was proposed based on its unique structure and the multiple and complex environment of the driving traffic. An adaptive genetic algorithm is used to optimize the parameters of the neuron PI controller. The simulation result of the neuron PI control for semi-active suspension system of tracked vehicle indicates that the vertical amplitude,pitch angle and vertical acceleration of the vehicle are well controlled. The root mean square (RMS) of the vertical amplitude decreases by 37.2%,and 45.2% for the pitch angle,38.6% for the vertical acceleration. The research of neuron PI control experiment for the semi-active suspension system of the tracked vehicle model mining in benthal indicates that the RMS of the weight acceleration vibrating along the vertical direction decreases by 29.5%,the power spectral density resonance peak of the acceleration of the car body decreases by 23.8%.展开更多
The model of half a tracked vehicle semi-active suspension is established. The fuzzy logic controller of the semi-active suspension system is constructed. The acceleration of driver's seat and its time derivative ...The model of half a tracked vehicle semi-active suspension is established. The fuzzy logic controller of the semi-active suspension system is constructed. The acceleration of driver's seat and its time derivative are used as the inputs of the fuzzy logic controller, and the fuzzy logic controller output determines the semi-active suspension controllable damping force. The fuzzy logic controller is to minimize the mean square root of acceleration of the driver's seat. The control forces of controllable dampers behind the first road wheel are obtained by time delay, and the delay times are determined by the vehicle speed and axles distances. The simulation results show that this control method can decrease the acceleration of driver's seat and the suspension travel of the first road wheel, the ride quality is improved obviously.展开更多
Life Cycle Tracking(LCT)involves continuous monitoring and analy-sis of various activities associated with a vehicle.The crucial factor in the LCT is to ensure the validity of gathered data as numerous supply chain ph...Life Cycle Tracking(LCT)involves continuous monitoring and analy-sis of various activities associated with a vehicle.The crucial factor in the LCT is to ensure the validity of gathered data as numerous supply chain phases are involved and the data is assessed by multiple stakeholders.Frauds and swindling activities can be prevented if the history of the vehicles is made available to the interested parties.Blockchain provides a way of enforcing trustworthiness to the supply chain participants and the data associated with the various actions per-formed.Machine learning techniques when combined decentralized nature of blockchains can be used to develop a robust Vehicle LCT model.In the proposed work,Harmonic Optimized Gradient Descent andŁukasiewicz Fuzzy(HOGD-LF)Vehicle Life Cycle Tracking in Cloud Environment is proposed and it involves three stages.First,the Progressive Harmonic Optimized User Registra-tion and Authentication model is designed for computationally efficient registra-tion and authentication.Next,for the authentic user,the Gradient Descent Blockchain-based SVM Data Encryption model is designed with minimum CPU utilization.Finally,Łukasiewicz Fuzzy Smart Contract Verification is per-formed with encrypted data to ensure accurate and precise fraudulent activity deduction.The experimental analysis shows that the proposed method achieves significant performance in terms of life cycle’s prediction time,overhead,and accuracy for a different number of users.展开更多
Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do no...Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do not work well for low volume road, which is not well-marked and with noises such as vehicle tracks. A fusion-based method termed Dempster-Shafer-based road detection(DSRD) is proposed to address this issue. This method detects road boundary by combining multiple information sources using Dempster-Shafer theory(DST). In order to test the performance of the proposed method, two field experiments were conducted, one of which was on a highway partially covered by snow and another was on a dense traffic highway. The results show that DSRD is robust and accurate, whose detection rates are 100% and 99.8% compared with manual detection results. Then, DSRD is adopted to improve UAV video processing algorithm, and the vehicle detection and tracking rate are improved by 2.7% and 5.5%,respectively. Also, the computation time has decreased by 5% and 8.3% for two experiments, respectively.展开更多
Shadow extraction and elimination is essential for intelligent transportation systems(ITS)in vehicle tracking application.The shadow is the source of error for vehicle detection,which causes misclassification of vehic...Shadow extraction and elimination is essential for intelligent transportation systems(ITS)in vehicle tracking application.The shadow is the source of error for vehicle detection,which causes misclassification of vehicles and a high false alarm rate in the research of vehicle counting,vehicle detection,vehicle tracking,and classification.Most of the existing research is on shadow extraction of moving vehicles in high intensity and on standard datasets,but the process of extracting shadows from moving vehicles in low light of real scenes is difficult.The real scenes of vehicles dataset are generated by self on the Vadodara–Mumbai highway during periods of poor illumination for shadow extraction of moving vehicles to address the above problem.This paper offers a robust shadow extraction of moving vehicles and its elimination for vehicle tracking.The method is distributed into two phases:In the first phase,we extract foreground regions using a mixture of Gaussian model,and then in the second phase,with the help of the Gamma correction,intensity ratio,negative transformation,and a combination of Gaussian filters,we locate and remove the shadow region from the foreground areas.Compared to the outcomes proposed method with outcomes of an existing method,the suggested method achieves an average true negative rate of above 90%,a shadow detection rate SDR(η%),and a shadow discrimination rate SDR(ξ%)of 80%.Hence,the suggested method is more appropriate for moving shadow detection in real scenes.展开更多
The vibration caused by terrible road excitation affects the ride quality and safety of track vehicles. The vibration control of suspension systems is a very important factor for modern track vehicles. A fuzzy logic c...The vibration caused by terrible road excitation affects the ride quality and safety of track vehicles. The vibration control of suspension systems is a very important factor for modern track vehicles. A fuzzy logic control for suspension system of a track vehicle is presented. A mechanical model and a system of difft, rential equations of motion taking account of the mass of loading wheel are established. Then the fuzzy logic control is applied to control the vibration of suspension system of track vehicles for sine signal and random road surfaces. Numerical simulation shows that the maximum acceleration of suspension system can be reduced to 44 % of the original value for sine signal road surface, and the mean square root of acceleration of suspension system can be reduced to 21% for random road surface. Therefore, the proposed fuzzy logic control is an efficient method for the suspension systems of track vehicles.展开更多
Traffic data collection is essential for performance assessment, safety improvement and road planning. While automated traffic data collection for highways is relatively mature, that for roundabouts is more challengin...Traffic data collection is essential for performance assessment, safety improvement and road planning. While automated traffic data collection for highways is relatively mature, that for roundabouts is more challenging due to more complex traffic scenes, data specifications and vehicle behavior. In this paper, the authors propose an automated traffic data collection system dedicated to roundabout scenes. The proposed system has mainly four steps of processing. First, camera calibration is performed for roundabout traffic scenes with a novel circle-based calibration algorithm. Second, the system uses enhanced Mixture of Gaussian algorithm with shaking removal for video segmentation, which can tolerate repeated camera displacements and background movements. Then, Kalman filtering, Kemel-based tracking and overlap-based opti- mization are employed to track vehicles while they are occluded and to derive the complete vehicle trajectories. The resulting vehicle trajectory of each individual vehicle gives the position, size, shape and speed of the vehicle at each time moment. Finally, a data mining algorithm is used to automatically extract the interested traffic data from the vehicle trajectories. The overall traffic data collection system has been implemented in software and runs on regular PC. The total processing time for a 3-hour video is currently 6 h. The automated traffic data collection system can significantly reduce cost and improve efficiency compared to manual data collection. The extracted traffic data have been compared to accurate manual measurements for 29 videos recorded on 29 different days, and an accuracy of more than 90% has been achieved.展开更多
A scheme of fuzzy logic control for the suspension system of a tracked vehicle is presented. A mechanical model for the whole body of a tracked vehicle, which is totally a fifteen-degree-of-freedom system, is establis...A scheme of fuzzy logic control for the suspension system of a tracked vehicle is presented. A mechanical model for the whole body of a tracked vehicle, which is totally a fifteen-degree-of-freedom system, is established. The model includes the vertical motion, the pitch motion as well as the roll motion of the tracked vehicle. In contrast to most previous studies, the coupling effect among the vertical, the pitch and the roll motions of the suspension system of a tracked vehicle is considered simultaneously. The simulation of fuzzy logic control under road surface with random excitation shows that the acceleration, pitch angle and roll angle of suspension system can be efficiently controlled.展开更多
An important and challenging aspect of developing an intelligent transportation system is the identification of nighttime vehicles. Most accidents occur at night owing to the absence of night lighting conditions. Vehi...An important and challenging aspect of developing an intelligent transportation system is the identification of nighttime vehicles. Most accidents occur at night owing to the absence of night lighting conditions. Vehicle detection has become a vital subject for research to ensure safety and avoid accidents. New vision-based on-road nighttime vehicle detection and tracking system are suggested in this survey paper using taillight and headlight features. Using computer vision and some image processing techniques, the proposed system can identify vehicles based on taillight and headlight features. For vehicle tracking, a centroid tracking algorithm has been used. Euclidean Distance method has been used for measuring the distances between two neighboring objects and tracks the nearest neighbor. In the proposed system two flexible fixed Region of Interest (ROI) have been used, one is the Headlight ROI, and another is the Taillight ROI that could adapt to different resolutions of the images and videos. The achievement of this research work is that the proposed two ROIs can work simultaneously in a frame to identify oncoming and preceding vehicles at night. The segmentation techniques and double thresholding method have been used to extract the red and white components from the scene to identify the vehicle headlights and taillights. To evaluate the capability of the proposed process, two types of datasets have been used. Experimental findings indicate that the performance of the proposed technique is reliable and effective in distinct nighttime environments for detection and tracking of vehicles. The proposed method has been able to detect and track double lights as well as single light such as motorcycle light and achieved average accuracy and average processing time of vehicle detection about 97.22% and 0.01 s per frame respectively.展开更多
The latest advances in Deep Learning based methods and computational capabilities provide new opportunities for vehicle tracking. In this study, YOLOv2 (You Only Look Once—version 2) is used as an open source Convolu...The latest advances in Deep Learning based methods and computational capabilities provide new opportunities for vehicle tracking. In this study, YOLOv2 (You Only Look Once—version 2) is used as an open source Convolutional Neural Network (CNN), to process high-resolution satellite images, in order to generate the spatio-temporal GIS (Geographic Information System) tracks of moving vehicles. At first step, YOLOv2 is trained with a set of images of 1024 × 1024 resolution from the VEDAI database. The model showed satisfactory results, with an accuracy of 91%, and then at second step, is used to process aerial images extracted from aerial video. The output vehicle bounding boxes have been processed and fed into the GIS based LinkTheDots algorithm, allowing vehicles identification and spatio-temporal tracks generation in GIS format.展开更多
This paper outlines research findings from an investigation into a range of options for generating vehicle data relevant to traffic management systems.Linking data from freight vehicles with traffic management systems...This paper outlines research findings from an investigation into a range of options for generating vehicle data relevant to traffic management systems.Linking data from freight vehicles with traffic management systems stands to provide a number of benefits.These include reducing congestion,improving safety,reducing freight vehicle trip times,informing alternative routing for freight vehicles,and informing transport planning and investment decisions.This paper will explore a number of different methods to detect,classify,and track vehicles,each having strengths and weaknesses,and each with different levels of accuracy and associated costs.In terms of freight management applications,the key feature is the capability to track in real time the position of the vehicle.This can be done using a range of technologies that either are located on the vehicle such as GPS(global positioning system)trackers and RFID(Radio Frequency Identification)Tags or are part of the network infrastructure such as CCTV(Closed Circuit Television)cameras,satellites,mobile phone towers,Wi-Fi receivers and RFID readers.Technology in this space is advancing quickly having started with a focus on infrastructure based sensors and communications devices and more recently shifting to GPS and mobile devices.The paper concludes with an overview of considerations for how data from freight vehicles may interact with traffic management systems for mutual benefit.This new area of research and practice seeks to balance the needs of traffic management systems in order to better manage traffic and prevent bottlenecks and congestion while delivering tangible benefits to freight companies stands to be of great interest in the coming decade.This research has been developed with funding and support provided by Australia’s SBEnrc(Sustainable Built Environment National Research Centre)and its partners.展开更多
To realize the stabilization and the tracking of flight control for an air-breathing hypersonic cruise vehicle, the linearization of the longitudinal model under trimmed cruise condition is processed firstly. Furtherm...To realize the stabilization and the tracking of flight control for an air-breathing hypersonic cruise vehicle, the linearization of the longitudinal model under trimmed cruise condition is processed firstly. Furthermore, the flight control problem is formulated as a robust model tracking control problem. And then, based on the robust parametric approach, eigenstructure assignment and reference model tracking theory, a parametric optimization method for robust controller design is presented. The simulation results show the effectiveness of the proposed approach.展开更多
Enhancing ride comfort has always constituted a crucial focus in the design and research of modern tracked vehicles,heavily reliant on the driving system's performance.While the road wheel is a key component of th...Enhancing ride comfort has always constituted a crucial focus in the design and research of modern tracked vehicles,heavily reliant on the driving system's performance.While the road wheel is a key component of the driving system,traditional road wheels predominantly adopt a solid structure,exhibiting subpar adhesion performance and damping effects,thereby falling short of meeting the demands for high-speed,stable,and long-distance driving in tracked vehicles.Addressing this issue,this paper proposes a novel type of flexible road wheel(FRW)characterized by a catenary construction.The study investigates the ride comfort of tracked vehicles equipped with flexible road wheels by integrating finite element and vehicle dynamic.First,three-dimensional(3D)finite element(FE)models of both flexible and rigid road wheels are established,considering material and contact nonlinearities.These models are validated through a wheel radial loading test.Based on the validated FE model,the paper uncovers the relationship between load and radial deformation of the road wheel,forming the basis for a nonlinear mathematical model.Subsequently,a half-car model of a tracked vehicle with seven degrees of freedom is established using Newton's second law.A random road model,considering the track effect and employing white noise,is constructed.The study concludes by examining the ride comfort of tracked vehicles equipped with flexible and rigid road wheels under various speeds and road grades.The results demonstrate that,in comparison to the rigid road wheel(RRW),the flexible road wheel enhances the ride comfort of tracked vehicles on randomly uneven roads.This research provides a theoretical foundation for the implementation of flexible road wheels in tracked vehicles.展开更多
In this paper, a model order reduction strategy is adopted for the static and dynamic behaviour simulation of a high-speed tracked vehicle. The total number of degree of freedom of the structure is condensed through a...In this paper, a model order reduction strategy is adopted for the static and dynamic behaviour simulation of a high-speed tracked vehicle. The total number of degree of freedom of the structure is condensed through a selection of interface degrees of freedom and significant global mode shapes, for an approximated description of vehicle dynamic behaviour. The methodology is implemented in a customised open-source software to reduce the computational efforts. The modelled tracked vehicle includes the sprung mass, the unsprung masses, connected by means of torsional bars, and all the track assemblies, composing the track chain. The proposed research activity presents a comprehensive investigation of the influence of the track chain, combined with longitudinal vehicle speed, on statics and vehicle dynamics, focusing on vertical dynamics. The vehicle response has been investigated both in frequency and time domain. In this last case road-wheel displacements are assumed as inputs for the model, under different working conditions, hence considering several road profiles with different amplitudes and characteristic excitation frequencies. Simulation results have proven a high fidelity in model order reduction approach and a significant contribution of the track chain in the global dynamic behaviour of the tracked vehicle.展开更多
Intelligent vehicle tracking and detection are crucial tasks in the realm of highway management.However,vehicles come in a range of sizes,which is challenging to detect,affecting the traffic monitoring system’s overa...Intelligent vehicle tracking and detection are crucial tasks in the realm of highway management.However,vehicles come in a range of sizes,which is challenging to detect,affecting the traffic monitoring system’s overall accuracy.Deep learning is considered to be an efficient method for object detection in vision-based systems.In this paper,we proposed a vision-based vehicle detection and tracking system based on a You Look Only Once version 5(YOLOv5)detector combined with a segmentation technique.The model consists of six steps.In the first step,all the extracted traffic sequence images are subjected to pre-processing to remove noise and enhance the contrast level of the images.These pre-processed images are segmented by labelling each pixel to extract the uniform regions to aid the detection phase.A single-stage detector YOLOv5 is used to detect and locate vehicles in images.Each detection was exposed to Speeded Up Robust Feature(SURF)feature extraction to track multiple vehicles.Based on this,a unique number is assigned to each vehicle to easily locate them in the succeeding image frames by extracting them using the feature-matching technique.Further,we implemented a Kalman filter to track multiple vehicles.In the end,the vehicle path is estimated by using the centroid points of the rectangular bounding box predicted by the tracking algorithm.The experimental results and comparison reveal that our proposed vehicle detection and tracking system outperformed other state-of-the-art systems.The proposed implemented system provided 94.1%detection precision for Roundabout and 96.1%detection precision for Vehicle Aerial Imaging from Drone(VAID)datasets,respectively.展开更多
To fulfill the operational demands of deep-sea tracked mining vehicles traversing soft seabed substrates,an evaluation of the characteristics of these substrates was conducted,drawing a comparison with the land swamp ...To fulfill the operational demands of deep-sea tracked mining vehicles traversing soft seabed substrates,an evaluation of the characteristics of these substrates was conducted,drawing a comparison with the land swamp black soil found in the buffalo's habitat.Employing the principles of biomimicry,two distinct types of bionic grouser were devised,replicating the configuration of the buffalo's hooves in both the horizontal and vertical planes.Utilizing self-constructed testing platforms,exhaustive examinations of the reinforcement efficacy of these bionic track grousers were undertaken,spanning from single-grouser to multi-grouser configurations and encompassing the entire track assembly.The findings unequivocally demonstrate a pronounced and consistent enhancement in traction force for both types of bionic grousers.Notably,the W-shaped bionic grouser,mimicking the horizontal contour of the buffalo's hoof,exhibits the most substantial increase in traction force.The maximum enhancement in traction force for individual bionic grouser exceeds 30%,while the overall track achieves an increase of over 19%.This research provides a valuable reference and establishes a foundational framework for the design of equipment tailored for the locomotion of deep-sea tracked mining vehicles across soft substrates.展开更多
The track model used in the dynamic analysis and design system software is investigated. A home made tank is taken as an example to illustrate the method for modeling an integral tracked vehicle and perform the dynam...The track model used in the dynamic analysis and design system software is investigated. A home made tank is taken as an example to illustrate the method for modeling an integral tracked vehicle and perform the dynamic simulation. The obtained results have demonstrated that the simulation method has the advantage of high efficiency, more convenience and more insight into the dynamical behavior of the system.展开更多
基金Supported by the National Natural Science Foundation of China(No.61005034)China Postdoctoral Science Foundation and under Grant(No.2012M510768)the Science Foundation of Hebei Province under Grant(No.F2012203182)
文摘A real-time vehicle tracking method is proposed for trattlC monitoring system at roau mte^cc- tions, and the vehicle tracking module consists of an initialization stage and a tracking stage. Li- cense plate location based on edge density and color analysis is used to detect the license plate re- gion for tracking initialization. In the tracking stage, covariance matching is employed to track the license plate. Genetic algorithm is used to reduce the computational cost. Real-time image tracking of multi-lane vehicles is achieved. In the experiment, test videos are recorded in advance by record- ers of actual E-police systems erage false detection rate and at several different city intersections. In the tracking module, the av- missed plates rate are 1.19%, and 1.72%, respectively.
基金The National Natural Science Foundation of China(No.60972001,61374194)
文摘To track the vehicles under occlusion, a vehicle tracking algorithm based on blocks is proposed. The target vehicle is divided into several blocks of uniform size, in which the edge block can overlap its neighboring blocks. All the blocks' motion vectors are estimated, and the noise motion vectors are detected and adjusted to decrease the error of motion vector estimation. Then, by moving the blocks based on the adjusted motion vectors, the vehicle is tracked. Aiming at the occlusion between vehicles, a Markov random field is established to describe the relationship between the blocks in the blocked regions. The neighborhood of blocks is defined using the Euclidean distance. An energy function is defined based on the blocks' histograms and optimized by the simulated annealing algorithm to segment the occlusion region. Experimental results demonstrate that the proposed algorithm can track vehicles under occlusion accurately.
文摘Zimbabwe has witnessed the evolution of Information Communication Technology (ICT). The vehicle population soared to above 1.2 million hence rendering the Transport and Insurance domains complex. Therefore, there is a need to look at ways that can augment conventional Vehicular Management Information Systems (VMIS) in transforming business processes through Telematics. This paper aims to contextualise the role that telematics can play in transforming the Insurance Ecosystem in Zimbabwe. The main objective was to investigate the integration of Usage-Based Insurance (UBI) with vehicle tracking solutions provided by technology companies like Econet Wireless in Zimbabwe, aiming to align customer billing with individual risk profiles and enhance the synergy between technology and insurance service providers in the motor insurance ecosystem. A triangulation through structured interviews, questionnaires, and literature review, supported by Information Systems Analysis and Design techniques was conducted. The study adopted a case study approach, qualitatively analyzing the complexities of the Telematics insurance ecosystem in Zimbabwe, informed by the TOGAF framework. A case-study approach was applied to derive themes whilst applying within and cross-case analysis. Data was collected using questionnaires, and interviews. The findings of the research clearly show the importance of Telematics in modern-day insurance and the positive relationship between technology and insurance business performance. The study, therefore revealed how UBI can incentivize positive driver behavior, potentially reducing insurance premiums for safe drivers and lowering the incidence of claims against insurance companies. Future work can be done on studying the role of Telematics in combating highway crime and corruption.
基金Project(2010GK3091) supported by Industrial Support Project in Science and Technology of Hunan Province, ChinaProject(10B058) supported by Excellent Youth Foundation Subsidized Project of Hunan Provincial Education Department, China
文摘A neuron proportion integration (PI) control strategy for semi-active suspension system of tracked vehicle was proposed based on its unique structure and the multiple and complex environment of the driving traffic. An adaptive genetic algorithm is used to optimize the parameters of the neuron PI controller. The simulation result of the neuron PI control for semi-active suspension system of tracked vehicle indicates that the vertical amplitude,pitch angle and vertical acceleration of the vehicle are well controlled. The root mean square (RMS) of the vertical amplitude decreases by 37.2%,and 45.2% for the pitch angle,38.6% for the vertical acceleration. The research of neuron PI control experiment for the semi-active suspension system of the tracked vehicle model mining in benthal indicates that the RMS of the weight acceleration vibrating along the vertical direction decreases by 29.5%,the power spectral density resonance peak of the acceleration of the car body decreases by 23.8%.
文摘The model of half a tracked vehicle semi-active suspension is established. The fuzzy logic controller of the semi-active suspension system is constructed. The acceleration of driver's seat and its time derivative are used as the inputs of the fuzzy logic controller, and the fuzzy logic controller output determines the semi-active suspension controllable damping force. The fuzzy logic controller is to minimize the mean square root of acceleration of the driver's seat. The control forces of controllable dampers behind the first road wheel are obtained by time delay, and the delay times are determined by the vehicle speed and axles distances. The simulation results show that this control method can decrease the acceleration of driver's seat and the suspension travel of the first road wheel, the ride quality is improved obviously.
基金The authors wish to express their sincere thanks to the Department of Science&Technology,New Delhi,India(Project ID:SR/FST/ETI-371/2014)express their sincere thanks to the INSPIRE fellowship(DST/INSPIRE Fellowship/2016/IF160837)for their financial support.The authors also thank SASTRA Deemed to be University,Thanjavur,India for extending the infrastructural support to carry out this work.
文摘Life Cycle Tracking(LCT)involves continuous monitoring and analy-sis of various activities associated with a vehicle.The crucial factor in the LCT is to ensure the validity of gathered data as numerous supply chain phases are involved and the data is assessed by multiple stakeholders.Frauds and swindling activities can be prevented if the history of the vehicles is made available to the interested parties.Blockchain provides a way of enforcing trustworthiness to the supply chain participants and the data associated with the various actions per-formed.Machine learning techniques when combined decentralized nature of blockchains can be used to develop a robust Vehicle LCT model.In the proposed work,Harmonic Optimized Gradient Descent andŁukasiewicz Fuzzy(HOGD-LF)Vehicle Life Cycle Tracking in Cloud Environment is proposed and it involves three stages.First,the Progressive Harmonic Optimized User Registra-tion and Authentication model is designed for computationally efficient registra-tion and authentication.Next,for the authentic user,the Gradient Descent Blockchain-based SVM Data Encryption model is designed with minimum CPU utilization.Finally,Łukasiewicz Fuzzy Smart Contract Verification is per-formed with encrypted data to ensure accurate and precise fraudulent activity deduction.The experimental analysis shows that the proposed method achieves significant performance in terms of life cycle’s prediction time,overhead,and accuracy for a different number of users.
基金Project(2009AA11Z220)supported by the National High Technology Research and Development Program of China
文摘Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do not work well for low volume road, which is not well-marked and with noises such as vehicle tracks. A fusion-based method termed Dempster-Shafer-based road detection(DSRD) is proposed to address this issue. This method detects road boundary by combining multiple information sources using Dempster-Shafer theory(DST). In order to test the performance of the proposed method, two field experiments were conducted, one of which was on a highway partially covered by snow and another was on a dense traffic highway. The results show that DSRD is robust and accurate, whose detection rates are 100% and 99.8% compared with manual detection results. Then, DSRD is adopted to improve UAV video processing algorithm, and the vehicle detection and tracking rate are improved by 2.7% and 5.5%,respectively. Also, the computation time has decreased by 5% and 8.3% for two experiments, respectively.
基金funded by Researchers Supporting Project Number(RSP2023R503),King Saud University,Riyadh,Saudi Arabia。
文摘Shadow extraction and elimination is essential for intelligent transportation systems(ITS)in vehicle tracking application.The shadow is the source of error for vehicle detection,which causes misclassification of vehicles and a high false alarm rate in the research of vehicle counting,vehicle detection,vehicle tracking,and classification.Most of the existing research is on shadow extraction of moving vehicles in high intensity and on standard datasets,but the process of extracting shadows from moving vehicles in low light of real scenes is difficult.The real scenes of vehicles dataset are generated by self on the Vadodara–Mumbai highway during periods of poor illumination for shadow extraction of moving vehicles to address the above problem.This paper offers a robust shadow extraction of moving vehicles and its elimination for vehicle tracking.The method is distributed into two phases:In the first phase,we extract foreground regions using a mixture of Gaussian model,and then in the second phase,with the help of the Gamma correction,intensity ratio,negative transformation,and a combination of Gaussian filters,we locate and remove the shadow region from the foreground areas.Compared to the outcomes proposed method with outcomes of an existing method,the suggested method achieves an average true negative rate of above 90%,a shadow detection rate SDR(η%),and a shadow discrimination rate SDR(ξ%)of 80%.Hence,the suggested method is more appropriate for moving shadow detection in real scenes.
文摘The vibration caused by terrible road excitation affects the ride quality and safety of track vehicles. The vibration control of suspension systems is a very important factor for modern track vehicles. A fuzzy logic control for suspension system of a track vehicle is presented. A mechanical model and a system of difft, rential equations of motion taking account of the mass of loading wheel are established. Then the fuzzy logic control is applied to control the vibration of suspension system of track vehicles for sine signal and random road surfaces. Numerical simulation shows that the maximum acceleration of suspension system can be reduced to 44 % of the original value for sine signal road surface, and the mean square root of acceleration of suspension system can be reduced to 21% for random road surface. Therefore, the proposed fuzzy logic control is an efficient method for the suspension systems of track vehicles.
文摘Traffic data collection is essential for performance assessment, safety improvement and road planning. While automated traffic data collection for highways is relatively mature, that for roundabouts is more challenging due to more complex traffic scenes, data specifications and vehicle behavior. In this paper, the authors propose an automated traffic data collection system dedicated to roundabout scenes. The proposed system has mainly four steps of processing. First, camera calibration is performed for roundabout traffic scenes with a novel circle-based calibration algorithm. Second, the system uses enhanced Mixture of Gaussian algorithm with shaking removal for video segmentation, which can tolerate repeated camera displacements and background movements. Then, Kalman filtering, Kemel-based tracking and overlap-based opti- mization are employed to track vehicles while they are occluded and to derive the complete vehicle trajectories. The resulting vehicle trajectory of each individual vehicle gives the position, size, shape and speed of the vehicle at each time moment. Finally, a data mining algorithm is used to automatically extract the interested traffic data from the vehicle trajectories. The overall traffic data collection system has been implemented in software and runs on regular PC. The total processing time for a 3-hour video is currently 6 h. The automated traffic data collection system can significantly reduce cost and improve efficiency compared to manual data collection. The extracted traffic data have been compared to accurate manual measurements for 29 videos recorded on 29 different days, and an accuracy of more than 90% has been achieved.
文摘A scheme of fuzzy logic control for the suspension system of a tracked vehicle is presented. A mechanical model for the whole body of a tracked vehicle, which is totally a fifteen-degree-of-freedom system, is established. The model includes the vertical motion, the pitch motion as well as the roll motion of the tracked vehicle. In contrast to most previous studies, the coupling effect among the vertical, the pitch and the roll motions of the suspension system of a tracked vehicle is considered simultaneously. The simulation of fuzzy logic control under road surface with random excitation shows that the acceleration, pitch angle and roll angle of suspension system can be efficiently controlled.
文摘An important and challenging aspect of developing an intelligent transportation system is the identification of nighttime vehicles. Most accidents occur at night owing to the absence of night lighting conditions. Vehicle detection has become a vital subject for research to ensure safety and avoid accidents. New vision-based on-road nighttime vehicle detection and tracking system are suggested in this survey paper using taillight and headlight features. Using computer vision and some image processing techniques, the proposed system can identify vehicles based on taillight and headlight features. For vehicle tracking, a centroid tracking algorithm has been used. Euclidean Distance method has been used for measuring the distances between two neighboring objects and tracks the nearest neighbor. In the proposed system two flexible fixed Region of Interest (ROI) have been used, one is the Headlight ROI, and another is the Taillight ROI that could adapt to different resolutions of the images and videos. The achievement of this research work is that the proposed two ROIs can work simultaneously in a frame to identify oncoming and preceding vehicles at night. The segmentation techniques and double thresholding method have been used to extract the red and white components from the scene to identify the vehicle headlights and taillights. To evaluate the capability of the proposed process, two types of datasets have been used. Experimental findings indicate that the performance of the proposed technique is reliable and effective in distinct nighttime environments for detection and tracking of vehicles. The proposed method has been able to detect and track double lights as well as single light such as motorcycle light and achieved average accuracy and average processing time of vehicle detection about 97.22% and 0.01 s per frame respectively.
文摘The latest advances in Deep Learning based methods and computational capabilities provide new opportunities for vehicle tracking. In this study, YOLOv2 (You Only Look Once—version 2) is used as an open source Convolutional Neural Network (CNN), to process high-resolution satellite images, in order to generate the spatio-temporal GIS (Geographic Information System) tracks of moving vehicles. At first step, YOLOv2 is trained with a set of images of 1024 × 1024 resolution from the VEDAI database. The model showed satisfactory results, with an accuracy of 91%, and then at second step, is used to process aerial images extracted from aerial video. The output vehicle bounding boxes have been processed and fed into the GIS based LinkTheDots algorithm, allowing vehicles identification and spatio-temporal tracks generation in GIS format.
基金funding and support provided by Australia’s SBEnrc(Sustainable Built Environment National Research Centre)and its partners.
文摘This paper outlines research findings from an investigation into a range of options for generating vehicle data relevant to traffic management systems.Linking data from freight vehicles with traffic management systems stands to provide a number of benefits.These include reducing congestion,improving safety,reducing freight vehicle trip times,informing alternative routing for freight vehicles,and informing transport planning and investment decisions.This paper will explore a number of different methods to detect,classify,and track vehicles,each having strengths and weaknesses,and each with different levels of accuracy and associated costs.In terms of freight management applications,the key feature is the capability to track in real time the position of the vehicle.This can be done using a range of technologies that either are located on the vehicle such as GPS(global positioning system)trackers and RFID(Radio Frequency Identification)Tags or are part of the network infrastructure such as CCTV(Closed Circuit Television)cameras,satellites,mobile phone towers,Wi-Fi receivers and RFID readers.Technology in this space is advancing quickly having started with a focus on infrastructure based sensors and communications devices and more recently shifting to GPS and mobile devices.The paper concludes with an overview of considerations for how data from freight vehicles may interact with traffic management systems for mutual benefit.This new area of research and practice seeks to balance the needs of traffic management systems in order to better manage traffic and prevent bottlenecks and congestion while delivering tangible benefits to freight companies stands to be of great interest in the coming decade.This research has been developed with funding and support provided by Australia’s SBEnrc(Sustainable Built Environment National Research Centre)and its partners.
基金Sponsored by the Major Program of National Natural Science Foundation of China (Grant No.60710002)the Program for Changjiang Scholars and Innovative Research Team in University
文摘To realize the stabilization and the tracking of flight control for an air-breathing hypersonic cruise vehicle, the linearization of the longitudinal model under trimmed cruise condition is processed firstly. Furthermore, the flight control problem is formulated as a robust model tracking control problem. And then, based on the robust parametric approach, eigenstructure assignment and reference model tracking theory, a parametric optimization method for robust controller design is presented. The simulation results show the effectiveness of the proposed approach.
基金Supported by National Natural Science Foundation of China (Grant No.11672127)Innovative Science and Technology Platform Project of Cooperation between Yangzhou City and Yangzhou University of China (Grant No.YZ2020266)+3 种基金Advance Research Special Technology Project of Army Equipment of China (Grant No.AGA19001)Innovation Fund Project of China Aerospace 1st Academy (Grant No.CHC20001)Fundamental Research Funds for the Central Universities of China (Grant No.NP2022408)Jiangsu Provincial Postgraduate Research&Practice Innovation Program of China (Grant No.SJCX23_1903)。
文摘Enhancing ride comfort has always constituted a crucial focus in the design and research of modern tracked vehicles,heavily reliant on the driving system's performance.While the road wheel is a key component of the driving system,traditional road wheels predominantly adopt a solid structure,exhibiting subpar adhesion performance and damping effects,thereby falling short of meeting the demands for high-speed,stable,and long-distance driving in tracked vehicles.Addressing this issue,this paper proposes a novel type of flexible road wheel(FRW)characterized by a catenary construction.The study investigates the ride comfort of tracked vehicles equipped with flexible road wheels by integrating finite element and vehicle dynamic.First,three-dimensional(3D)finite element(FE)models of both flexible and rigid road wheels are established,considering material and contact nonlinearities.These models are validated through a wheel radial loading test.Based on the validated FE model,the paper uncovers the relationship between load and radial deformation of the road wheel,forming the basis for a nonlinear mathematical model.Subsequently,a half-car model of a tracked vehicle with seven degrees of freedom is established using Newton's second law.A random road model,considering the track effect and employing white noise,is constructed.The study concludes by examining the ride comfort of tracked vehicles equipped with flexible and rigid road wheels under various speeds and road grades.The results demonstrate that,in comparison to the rigid road wheel(RRW),the flexible road wheel enhances the ride comfort of tracked vehicles on randomly uneven roads.This research provides a theoretical foundation for the implementation of flexible road wheels in tracked vehicles.
文摘In this paper, a model order reduction strategy is adopted for the static and dynamic behaviour simulation of a high-speed tracked vehicle. The total number of degree of freedom of the structure is condensed through a selection of interface degrees of freedom and significant global mode shapes, for an approximated description of vehicle dynamic behaviour. The methodology is implemented in a customised open-source software to reduce the computational efforts. The modelled tracked vehicle includes the sprung mass, the unsprung masses, connected by means of torsional bars, and all the track assemblies, composing the track chain. The proposed research activity presents a comprehensive investigation of the influence of the track chain, combined with longitudinal vehicle speed, on statics and vehicle dynamics, focusing on vertical dynamics. The vehicle response has been investigated both in frequency and time domain. In this last case road-wheel displacements are assumed as inputs for the model, under different working conditions, hence considering several road profiles with different amplitudes and characteristic excitation frequencies. Simulation results have proven a high fidelity in model order reduction approach and a significant contribution of the track chain in the global dynamic behaviour of the tracked vehicle.
基金This researchwas supported by the Deanship of ScientificResearch at Najran University,under the Research Group Funding Program Grant Code(NU/RG/SERC/12/30)This research is supported and funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2024R410)+1 种基金Princess Nourah bint Abdulrahman University,Riyadh,Saudi ArabiaThis study is supported via funding from Prince Sattam bin Abdulaziz University Project Number(PSAU/2024/R/1445).
文摘Intelligent vehicle tracking and detection are crucial tasks in the realm of highway management.However,vehicles come in a range of sizes,which is challenging to detect,affecting the traffic monitoring system’s overall accuracy.Deep learning is considered to be an efficient method for object detection in vision-based systems.In this paper,we proposed a vision-based vehicle detection and tracking system based on a You Look Only Once version 5(YOLOv5)detector combined with a segmentation technique.The model consists of six steps.In the first step,all the extracted traffic sequence images are subjected to pre-processing to remove noise and enhance the contrast level of the images.These pre-processed images are segmented by labelling each pixel to extract the uniform regions to aid the detection phase.A single-stage detector YOLOv5 is used to detect and locate vehicles in images.Each detection was exposed to Speeded Up Robust Feature(SURF)feature extraction to track multiple vehicles.Based on this,a unique number is assigned to each vehicle to easily locate them in the succeeding image frames by extracting them using the feature-matching technique.Further,we implemented a Kalman filter to track multiple vehicles.In the end,the vehicle path is estimated by using the centroid points of the rectangular bounding box predicted by the tracking algorithm.The experimental results and comparison reveal that our proposed vehicle detection and tracking system outperformed other state-of-the-art systems.The proposed implemented system provided 94.1%detection precision for Roundabout and 96.1%detection precision for Vehicle Aerial Imaging from Drone(VAID)datasets,respectively.
基金support of the National Natural Science Foundation of China(No.U1906234、No.52225107)the Fundamental Research Funds for the Central 410 Universities(grant 202041004).
文摘To fulfill the operational demands of deep-sea tracked mining vehicles traversing soft seabed substrates,an evaluation of the characteristics of these substrates was conducted,drawing a comparison with the land swamp black soil found in the buffalo's habitat.Employing the principles of biomimicry,two distinct types of bionic grouser were devised,replicating the configuration of the buffalo's hooves in both the horizontal and vertical planes.Utilizing self-constructed testing platforms,exhaustive examinations of the reinforcement efficacy of these bionic track grousers were undertaken,spanning from single-grouser to multi-grouser configurations and encompassing the entire track assembly.The findings unequivocally demonstrate a pronounced and consistent enhancement in traction force for both types of bionic grousers.Notably,the W-shaped bionic grouser,mimicking the horizontal contour of the buffalo's hoof,exhibits the most substantial increase in traction force.The maximum enhancement in traction force for individual bionic grouser exceeds 30%,while the overall track achieves an increase of over 19%.This research provides a valuable reference and establishes a foundational framework for the design of equipment tailored for the locomotion of deep-sea tracked mining vehicles across soft substrates.
文摘The track model used in the dynamic analysis and design system software is investigated. A home made tank is taken as an example to illustrate the method for modeling an integral tracked vehicle and perform the dynamic simulation. The obtained results have demonstrated that the simulation method has the advantage of high efficiency, more convenience and more insight into the dynamical behavior of the system.