Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suf...Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.展开更多
The current research of direct yaw moment control(DYC) system focus on the design of target yaw moment and the distribution of wheel brake force. The differential braking intervention can effectively improve the lat...The current research of direct yaw moment control(DYC) system focus on the design of target yaw moment and the distribution of wheel brake force. The differential braking intervention can effectively improve the lateral stability of the vehicle, however, the effect of DYC can be improved a step further by applying the control of vehicle longitudinal velocity. In this paper, the relationship between the vehicle longitudinal velocity and lateral stability is studied, and the simulation results show that a decrease of 5 km/h of longitudinal velocity at a particular situation can bring 100° increasing of stable steering upper limit. A critical stable velocity considering the effect of steering and yaw rate measurement is defined to evaluate the risk of losing steer-ability or stability. A novel velocity pre-control method is proposed by using a hierarchical pre-control logic and is integrated with the traditional DYC system. The control algorithm is verified through a hardware in-the-loop simulation system. Double lane change(DLC) test results on both high friction coefficient(μ) and low μ roads show that by using the pre-control method, the steering effort in DLC test can be reduced by 38% and 51% and the peak value of brake pressure control can be reduced by 20% and 12% respectively on high μ and low μ roads, the lateral stability is also improved. This research proposes a novel DYC system with lighter control effort and better control effect.展开更多
The basic parameters involved in current start-wave theoretical models such as density and velocity are difficult to obtain through traditional traffic detection devices. Thus it is hard to apply these theoretical mod...The basic parameters involved in current start-wave theoretical models such as density and velocity are difficult to obtain through traditional traffic detection devices. Thus it is hard to apply these theoretical models to the actual verification and prediction for real situation. Unmanned aerial vehicle( UAV),which can shoot aerial video and identify vehicles, roads and other objects, is introduced in this study as a new type of traffic information collection method to gather the real-time data of the necessary parameters. An improved start-wave velocity model is proposed,where the speed and density of traffic flow are converted into vehicle space headway,mean vehicle length and other auxiliary parameters which can be recognized from aerial video or other means. A UAV was used for video shooting at intersections in a flight experiment in order to verify the accuracy of the calculated start-wave velocity.The mean absolute error rate between the calculated velocity and the actual velocity is 2. 277%. Moreover, the improved start-wave velocity model showed much better accuracy than the traditional start-wave velocity model. The results indicate that the improved model is accurate enough to be used for model calibration and validation in signal timing optimization.展开更多
In the future connected vehicle environment,the information of multiple vehicles ahead can be readily collected in real-time,such as the velocity or headway,which provides more opportunities for information exchange a...In the future connected vehicle environment,the information of multiple vehicles ahead can be readily collected in real-time,such as the velocity or headway,which provides more opportunities for information exchange and cooperative control.Meanwhile,gyroidal roads are one of the fundamental road patterns prevalent in mountainous areas.To effectively control the system,it is therefore significant to explore the evolution mechanism of traffic flow on gyroidal roads under a connected vehicle environment.In this paper,we present a new continuum model with the average velocity of multiple vehicles ahead on gyroidal roads.The stability criterion and KdV-Burger equation are deduced via linear and nonlinear stability analysis,respectively.Solving the above KdV-Burger equation yields the density wave solution,which explores the formation and propagation property of traffic jams near the neutral stability curve.Simulation examples verify that the model can reproduce complex phenomena,such as shock waves and rarefaction waves.The analysis of the local cluster effect shows that the number of vehicles ahead and the radius information,and the slope information of gyroidal roads can exert a great influence on traffic jams.The effect of the first and second terms are positive,while the last term is negative.展开更多
A consensus algorithm proposed in the paper is applied to tackle remarkable problems of unmeasurable velocities,the environmental disturbances, and the limited communication environment for the multiple unmanned under...A consensus algorithm proposed in the paper is applied to tackle remarkable problems of unmeasurable velocities,the environmental disturbances, and the limited communication environment for the multiple unmanned underwater vehicles(multi-UUVs). Firstly, for a complex nonlinear and coupled model of the unmanned underwater vehicle(UUV), a technique of feedback linearization is developed to transform the nonlinear UUV model into a secondorder integral UUV model. Secondly, to address the problem of the unavailable velocity information and environmental disturbances for the multi-UUVs system, we design a distributed extended state observer(DESO) to estimate the unmeasurable velocities and environmental disturbances using the relative position information. Finally,we propose a protocol based on the estimation information from the DESO and demonstrate that the multi-UUVs system with the switching directed topologies under the protocol can reach consensus asymptotically. The theoretical result proposed in the literature is verified by one numerical example.展开更多
A new method uses a linear array that takes advantage of underwater physical sound fields to estimate the velocity of an underwater moving target. The mathematical model was established by considering the geometric re...A new method uses a linear array that takes advantage of underwater physical sound fields to estimate the velocity of an underwater moving target. The mathematical model was established by considering the geometric relationship between the moving target installed with only two transducers to radiate sound of different frequencies and the linear array. In addition, deterministic maximum likelihood and signal phase matching algorithms were introduced to effectively find the directions of arrival (DOAs) of the sound sources of the two transducers installed on the target. Factors causing velocity measurement errors were considered. To track the target, a linear array with a compass, a pressure transducer, a signal conditioner and a digital recorder was configured. Relevant requirements for the array parameters were derived. The simulation showed that a 16-element array with an aperture of less than lm can measure velocity with relative error of no more', than 4% when including typical system errors. Anechoic pool and reservoir experiments confirmed these results.展开更多
This paper is focused on developing a tracking controller for a hypersonic cruise vehicle using tangent linearization approach.The design of flight control systems for air-breathing hypersonic vehicles is a highly cha...This paper is focused on developing a tracking controller for a hypersonic cruise vehicle using tangent linearization approach.The design of flight control systems for air-breathing hypersonic vehicles is a highly challenging task due to the unique characteristics of the vehicle dynamics.Motivated by recent results on tangent linearization control,the tracking control problem for the hypersonic cruise vehicle is reduced to that of a feedback stabilizing controller design for a linear time-varying system which can be accomplished by a standard design method of frozen-time control.Through a proper model transformation,it can be proven that the tracking error of the designed closed-loop system decays exponentially.Simulation studies are conducted for trimmed cruise conditions of 110000 ft and Mach 15 where the responses of the vehicle to step changes in altitude and velocity are evaluated.The effectiveness of the controller is demonstrated by simulation results.展开更多
At present, most controllers of quadrotor unmanned aerial vehicles(UAVs) use Euler angles to express attitude. These controllers suffer a singularity problem when the pitch angle is near 90°, which limits the m...At present, most controllers of quadrotor unmanned aerial vehicles(UAVs) use Euler angles to express attitude. These controllers suffer a singularity problem when the pitch angle is near 90°, which limits the maneuverability of the UAV. To overcome this problem, based on the quatemion attitude representation, a 6 degree of freedom(DOF) nonlinear controller of a quadrotor UAV is designed using the trajectory linearization control(TLC) method. The overall controller contains a position sub-controller and an attitude sub-controller. The two controllers regulate the translational and rotational motion of the UAV, respectively. The controller is improved by using the commanded value instead of the nominal value as the input of the inner control loop. The performance of controller is tested by simulation before and after the improvement, the results show that the improved controller is better. The proposed controller is also tested via numerical simulation and real flights and is compared with the traditional controller based on Euler angles. The test results confirm the feasibility and the robustness of the proposed nonlinear controller. The proposed controller can successfully solve the singularity problem that usually occurs in the current attitude control of UAV and it is easy to be realized.展开更多
An enhanced trajectory linearization control (TLC) structure based on radial basis function neural network (RBFNN) and its application on an aerospace vehicle (ASV) flight control system are presensted. The infl...An enhanced trajectory linearization control (TLC) structure based on radial basis function neural network (RBFNN) and its application on an aerospace vehicle (ASV) flight control system are presensted. The influence of unknown disturbances and uncertainties is reduced by RBFNN thanks to its approaching ability, and a robustifying itera is used to overcome the approximate error of RBFNN. The parameters adaptive adjusting laws are designed on the Lyapunov theory. The uniform ultimate boundedness of all signals of the composite closed-loop system is proved based on Lyapunov theory. Finally, the flight control system of an ASV is designed based on the proposed method. Simulation results demonstrate the effectiveness and robustness of the designed approach.展开更多
This paper presents a flight control design for an unmanned aerial vehicle (UAV) using a nonlinear autoregressive moving average (NARMA-L2) neural network based feedback linearization and output redefinition techn...This paper presents a flight control design for an unmanned aerial vehicle (UAV) using a nonlinear autoregressive moving average (NARMA-L2) neural network based feedback linearization and output redefinition technique. The UAV investigated is non- minimum phase. The output redefinition technique is used in such a way that the resulting system to be inverted is a minimum phase system. The NARMA-L2 neural network is trained off-line for forward dynamics of the UAV model with redefined output and is then inverted to force the real output to approximately track a command input. Simulation results show that the proposed approaches have good performance.展开更多
Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as ...Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as a highly efficient method for identifying hidden risks in high-risk construction environments,surpassing traditional inspection techniques.Building on this foundation,this paper delves into the optimization of UAV inspection routing and scheduling,addressing the complexity introduced by factors such as no-fly zones,monitoring-interval time windows,and multiple monitoring rounds.To tackle this challenging problem,we propose a mixed-integer linear programming(MILP)model that optimizes inspection task assignments,monitoring sequence schedules,and charging decisions.The comprehensive consideration of these factors differentiates our problem from conventional vehicle routing problem(VRP),leading to a mathematically intractable model for commercial solvers in the case of large-scale instances.To overcome this limitation,we design a tailored variable neighborhood search(VNS)metaheuristic,customizing the algorithm to efficiently solve our model.Extensive numerical experiments are conducted to validate the efficacy of our proposed algorithm,demonstrating its scalability for both large-scale and real-scale instances.Sensitivity experiments and a case study based on an actual engineering project are also conducted,providing valuable insights for engineering managers to enhance inspection work efficiency.展开更多
One-dimensional linear regression equation between measured value of air velocity transducer and the average air velocity was established by experimental data. The effect is to be evaluated. Through judging the parame...One-dimensional linear regression equation between measured value of air velocity transducer and the average air velocity was established by experimental data. The effect is to be evaluated. Through judging the parameters, one-dimensional linear equation established is valid. Regression equation can approximately put the measurements of air velocity transducer into the value of average air velocity. The distribution of air velocity field is simulated using Comsol in the conditions of the same length of roadway, the same air velocity and different sections.展开更多
Aiming to improve the control accuracy of the vehicle height for the air suspension system,deeply analyzing the processes of variable mass gas thermodynamics and vehicle dynamics,a nonlinear height control model of th...Aiming to improve the control accuracy of the vehicle height for the air suspension system,deeply analyzing the processes of variable mass gas thermodynamics and vehicle dynamics,a nonlinear height control model of the air suspension vehicle was built. To deal with the nonlinear characteristic existing in the lifting and lowering processes,the nonlinear model of vehicle height control was linearized by using a feedback linearization method. Then,based on the linear full vehicle model,the sliding model controller was designed to achieve the control variables. Finally,the nonlinear control algorithm in the original coordinates can be achieved by the inverse transformation of coordinates. To validate the accuracy and effectiveness of the sliding mode controller,the height control processes were simulated in Matlab,i. e.,the lifting and lowering processes of the air suspension vehicle were taken when vehicle was in stationary and driving at a constant speed. The simulation results show that,compared to other controllers,the designed sliding model controller based on the feedback linearization can effectively solve the "overshoot"problem,existing in the height control process,and force the vehicle height to reach the desired value,so as to greatly improve the speed and accuracy of the height control process. Besides,the sliding mode controller can well regulate the roll and pitch motions of the vehicle body,thereby improving the vehicle's ride comfort.展开更多
This paper presents an improved design for the hypersonic reentry vehicle(HRV) by the trajectory linearization control(TLC) technology for the design of HRV. The physics-based model fails to take into account the exte...This paper presents an improved design for the hypersonic reentry vehicle(HRV) by the trajectory linearization control(TLC) technology for the design of HRV. The physics-based model fails to take into account the external disturbance in the flight envelope in which the stability and control derivatives prove to be nonlinear and time-varying, which is likely in turn to increase the difficulty in keeping the stability of the attitude control system. Therefore, it is of great significance to modulate the unsteady and nonlinear characteristic features of the system parameters so as to overcome the disadvantages of the conventional TLC technology that can only be valid and efficient in the cases when there may exist any minor uncertainties. It is just for this kind of necessity that we have developed a fuzzy-neural disturbance observer(FNDO) based on the B-spline to estimate such uncertainties and disturbances concerned by establishing a new dynamic system. The simulation results gained by using the aforementioned technology and the observer show that it is just due to the innovation of the adaptive trajectory linearization control(ATLC) system. Significant improvement has been realized in the performance and the robustness of the system in addition to its fault tolerance.展开更多
Is it possible to demonstrate the velocity addition without using a variable time (as it is done in theory of relativity)? The topic of this paper is to propose and demonstrate an alternative expres-sion based on the ...Is it possible to demonstrate the velocity addition without using a variable time (as it is done in theory of relativity)? The topic of this paper is to propose and demonstrate an alternative expres-sion based on the conservation of linear momenta. The method proposed here is to start from a physical object (and not from a mathematical point), i.e. from an object with a mass. And the hy-pothesis is inertial mass to be different from gravitational mass. Then, when impulses are added, we get an expression of the velocity addition itself. When numerical predictions are compared with experimental results, the differences are lower than the measures uncertainty. And these numerical results are much close to those predicts by the theory of relativity, nevertheless with a little difference at high velocities. If this demonstration and this expression were validated, it would allow giving an alternative explanation to some experiments and nature observations as Doppler Effect on light celerity. But first, it would be necessary to get from laboratories more precise experimental results, in order to validate or not this hypothesis of the sum of linear momenta with a Variable Inertial Mass.展开更多
For permanent magnet linear synchronous motor(PMLSM) working at trapezoidal speed for long time, high thrust brings high temperature rise, while low thrust limits dynamic performance. Thus, it is crucial to find a bal...For permanent magnet linear synchronous motor(PMLSM) working at trapezoidal speed for long time, high thrust brings high temperature rise, while low thrust limits dynamic performance. Thus, it is crucial to find a balance between temperature rise and dynamic performance. In this paper, a velocity planning model of the PMLSM at trapezoidal speed based on electromagnetic-fluid-thermal(EFT) field is proposed to obtain the optimal dynamic performance under temperature limitation. In this model, the winding loss is calculated considering the acceleration and deceleration time. The loss model is indirectly verified by the temperature rise experiment of an annular winding sample. The actual working conditions of the PMLSM are simulated by dynamic grid technology to research the influence of acceleration and deceleration on fluid flow in the air gap, and the variation rule of the thermal boundary condition is analyzed. Combined with the above conditions, the temperature rise of a coreless PMLSM(CPMLSM) under the rated working condition is calculated and analyzed in detail. Through this method and several iterations, the optimal dynamic performance under the temperature limitation is achieved. The result is verified by a comparison between simulation and prototype tests, which can help improve the dynamic performance.展开更多
In this paper,a compound sliding mode velocity control scheme with a new exponential reaching law(NERL)with thrust ripple observation strategy is proposed to obtain a high performance velocity loop of the linear perma...In this paper,a compound sliding mode velocity control scheme with a new exponential reaching law(NERL)with thrust ripple observation strategy is proposed to obtain a high performance velocity loop of the linear permanent magnet synchronous motor(LPMSM)control system.A sliding mode velocity controller based on NERL is firstly discussed to restrain chattering of the conventional exponential reaching law(CERL).Furthermore,the unavoidable thrust ripple caused by the special structure of linear motor will bring about velocity fluctuation and reduced control performance.Thus,a thrust ripple compensation strategy on the basis of extend Kalman filter(EKF)theory is proposed.The estimated thrust ripple will be introduced into the sliding mode velocity controller to optimize the control accuracy and robustness.The effectiveness of the proposal is validated with experimental results.展开更多
A kinetic model of the piecewise-linear nonlinear suspension system that consists of a dominant spring and an assistant spring is established. Bifurcation of the resonance solution to a suspension system with two degr...A kinetic model of the piecewise-linear nonlinear suspension system that consists of a dominant spring and an assistant spring is established. Bifurcation of the resonance solution to a suspension system with two degrees of freedom is investigated with the singularity theory. Transition sets of the system and 40 groups of bifurcation diagrams are obtained. The local bifurcation is found, and shows the overall character- istics of bifurcation. Based on the. relationship between parameters and the topological bifurcation solutions, motion characteristics with different parameters are obtained. The results provides a theoretical basis for the optimal control of vehicle suspension system parameters.展开更多
In general, it is important to operate the; airgap length uniformly for improving the system efficiency independent of the flatness of the reaction plate in a railway propulsion system by a linear induction motor (LI...In general, it is important to operate the; airgap length uniformly for improving the system efficiency independent of the flatness of the reaction plate in a railway propulsion system by a linear induction motor (LIM). And it is possible to operate the LIM propulsion system efficiently without a change of the LIM capacity through the airgap length control on the sloped rail. So, in this research, the authors introduce an airgap control system to control the airgap length which depends on the flatness of the secondary reaction plate when the LIM is operated, and design a rotary small-scaled LIM and its airgap control system before manufacturing the real system. Then, the authors analyze some characteristics of the LIM (thrust and normal force, input current, efficiency and power factor), and through the LIM control modeling, the authors finally analyze an effect of the airgap-length control of the LIM by the airgap control system.展开更多
基金National Natural Science Foundation of China(61973037)National 173 Program Project(2019-JCJQ-ZD-324)。
文摘Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.
基金Supported by National Natural Science Foundation of China(Grant Nos.51275557,51422505)
文摘The current research of direct yaw moment control(DYC) system focus on the design of target yaw moment and the distribution of wheel brake force. The differential braking intervention can effectively improve the lateral stability of the vehicle, however, the effect of DYC can be improved a step further by applying the control of vehicle longitudinal velocity. In this paper, the relationship between the vehicle longitudinal velocity and lateral stability is studied, and the simulation results show that a decrease of 5 km/h of longitudinal velocity at a particular situation can bring 100° increasing of stable steering upper limit. A critical stable velocity considering the effect of steering and yaw rate measurement is defined to evaluate the risk of losing steer-ability or stability. A novel velocity pre-control method is proposed by using a hierarchical pre-control logic and is integrated with the traditional DYC system. The control algorithm is verified through a hardware in-the-loop simulation system. Double lane change(DLC) test results on both high friction coefficient(μ) and low μ roads show that by using the pre-control method, the steering effort in DLC test can be reduced by 38% and 51% and the peak value of brake pressure control can be reduced by 20% and 12% respectively on high μ and low μ roads, the lateral stability is also improved. This research proposes a novel DYC system with lighter control effort and better control effect.
基金National High Technology Research and Development Program of China(No.2009AA11Z220)
文摘The basic parameters involved in current start-wave theoretical models such as density and velocity are difficult to obtain through traditional traffic detection devices. Thus it is hard to apply these theoretical models to the actual verification and prediction for real situation. Unmanned aerial vehicle( UAV),which can shoot aerial video and identify vehicles, roads and other objects, is introduced in this study as a new type of traffic information collection method to gather the real-time data of the necessary parameters. An improved start-wave velocity model is proposed,where the speed and density of traffic flow are converted into vehicle space headway,mean vehicle length and other auxiliary parameters which can be recognized from aerial video or other means. A UAV was used for video shooting at intersections in a flight experiment in order to verify the accuracy of the calculated start-wave velocity.The mean absolute error rate between the calculated velocity and the actual velocity is 2. 277%. Moreover, the improved start-wave velocity model showed much better accuracy than the traditional start-wave velocity model. The results indicate that the improved model is accurate enough to be used for model calibration and validation in signal timing optimization.
基金supported by Guangdong Basic and Applied Research Foundation(Project No.2022A1515010948,2019A1515111200,2019A1515110837,2023A1515011696)the National Science Foundation of China(Project No.72071079,52272310).
文摘In the future connected vehicle environment,the information of multiple vehicles ahead can be readily collected in real-time,such as the velocity or headway,which provides more opportunities for information exchange and cooperative control.Meanwhile,gyroidal roads are one of the fundamental road patterns prevalent in mountainous areas.To effectively control the system,it is therefore significant to explore the evolution mechanism of traffic flow on gyroidal roads under a connected vehicle environment.In this paper,we present a new continuum model with the average velocity of multiple vehicles ahead on gyroidal roads.The stability criterion and KdV-Burger equation are deduced via linear and nonlinear stability analysis,respectively.Solving the above KdV-Burger equation yields the density wave solution,which explores the formation and propagation property of traffic jams near the neutral stability curve.Simulation examples verify that the model can reproduce complex phenomena,such as shock waves and rarefaction waves.The analysis of the local cluster effect shows that the number of vehicles ahead and the radius information,and the slope information of gyroidal roads can exert a great influence on traffic jams.The effect of the first and second terms are positive,while the last term is negative.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51679057 and 51709062)Heilongjiang Province Outstanding Youth Fund (Grant No. J2016JQ0052)+2 种基金Equipment Preresearch Key Lab Fund (Grant No. 614221580107)China Postdoctoral Science Foundation (Grant No. 2019M651265)Harbin Science and Technology Talent Research Special Fund (Grant No.2017RAQXJ150)。
文摘A consensus algorithm proposed in the paper is applied to tackle remarkable problems of unmeasurable velocities,the environmental disturbances, and the limited communication environment for the multiple unmanned underwater vehicles(multi-UUVs). Firstly, for a complex nonlinear and coupled model of the unmanned underwater vehicle(UUV), a technique of feedback linearization is developed to transform the nonlinear UUV model into a secondorder integral UUV model. Secondly, to address the problem of the unavailable velocity information and environmental disturbances for the multi-UUVs system, we design a distributed extended state observer(DESO) to estimate the unmeasurable velocities and environmental disturbances using the relative position information. Finally,we propose a protocol based on the estimation information from the DESO and demonstrate that the multi-UUVs system with the switching directed topologies under the protocol can reach consensus asymptotically. The theoretical result proposed in the literature is verified by one numerical example.
基金Supported by the National Science Foundation of China under Grant No.60672136
文摘A new method uses a linear array that takes advantage of underwater physical sound fields to estimate the velocity of an underwater moving target. The mathematical model was established by considering the geometric relationship between the moving target installed with only two transducers to radiate sound of different frequencies and the linear array. In addition, deterministic maximum likelihood and signal phase matching algorithms were introduced to effectively find the directions of arrival (DOAs) of the sound sources of the two transducers installed on the target. Factors causing velocity measurement errors were considered. To track the target, a linear array with a compass, a pressure transducer, a signal conditioner and a digital recorder was configured. Relevant requirements for the array parameters were derived. The simulation showed that a 16-element array with an aperture of less than lm can measure velocity with relative error of no more', than 4% when including typical system errors. Anechoic pool and reservoir experiments confirmed these results.
基金supported by the National Natural Science Foundation of China (6071000260904007)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in Universitythe State Key Laboratory of Robotics and System (SKLRS200801AO3)
文摘This paper is focused on developing a tracking controller for a hypersonic cruise vehicle using tangent linearization approach.The design of flight control systems for air-breathing hypersonic vehicles is a highly challenging task due to the unique characteristics of the vehicle dynamics.Motivated by recent results on tangent linearization control,the tracking control problem for the hypersonic cruise vehicle is reduced to that of a feedback stabilizing controller design for a linear time-varying system which can be accomplished by a standard design method of frozen-time control.Through a proper model transformation,it can be proven that the tracking error of the designed closed-loop system decays exponentially.Simulation studies are conducted for trimmed cruise conditions of 110000 ft and Mach 15 where the responses of the vehicle to step changes in altitude and velocity are evaluated.The effectiveness of the controller is demonstrated by simulation results.
基金Supported by National Science Foundation for Distinguished Young Scholars of China(Grant No.51125020)National Natural Science Foundation of China(Grant No.51505014)China Postdoctoral Science Foundation(Grant No.2016T90024)
文摘At present, most controllers of quadrotor unmanned aerial vehicles(UAVs) use Euler angles to express attitude. These controllers suffer a singularity problem when the pitch angle is near 90°, which limits the maneuverability of the UAV. To overcome this problem, based on the quatemion attitude representation, a 6 degree of freedom(DOF) nonlinear controller of a quadrotor UAV is designed using the trajectory linearization control(TLC) method. The overall controller contains a position sub-controller and an attitude sub-controller. The two controllers regulate the translational and rotational motion of the UAV, respectively. The controller is improved by using the commanded value instead of the nominal value as the input of the inner control loop. The performance of controller is tested by simulation before and after the improvement, the results show that the improved controller is better. The proposed controller is also tested via numerical simulation and real flights and is compared with the traditional controller based on Euler angles. The test results confirm the feasibility and the robustness of the proposed nonlinear controller. The proposed controller can successfully solve the singularity problem that usually occurs in the current attitude control of UAV and it is easy to be realized.
基金the National Natural Science Foundation of China (90405011).
文摘An enhanced trajectory linearization control (TLC) structure based on radial basis function neural network (RBFNN) and its application on an aerospace vehicle (ASV) flight control system are presensted. The influence of unknown disturbances and uncertainties is reduced by RBFNN thanks to its approaching ability, and a robustifying itera is used to overcome the approximate error of RBFNN. The parameters adaptive adjusting laws are designed on the Lyapunov theory. The uniform ultimate boundedness of all signals of the composite closed-loop system is proved based on Lyapunov theory. Finally, the flight control system of an ASV is designed based on the proposed method. Simulation results demonstrate the effectiveness and robustness of the designed approach.
文摘This paper presents a flight control design for an unmanned aerial vehicle (UAV) using a nonlinear autoregressive moving average (NARMA-L2) neural network based feedback linearization and output redefinition technique. The UAV investigated is non- minimum phase. The output redefinition technique is used in such a way that the resulting system to be inverted is a minimum phase system. The NARMA-L2 neural network is trained off-line for forward dynamics of the UAV model with redefined output and is then inverted to force the real output to approximately track a command input. Simulation results show that the proposed approaches have good performance.
基金supported by the National Natural Science Foundation of China(72201229,72025103,72394360,72394362,72361137001,72071173,and 71831008).
文摘Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as a highly efficient method for identifying hidden risks in high-risk construction environments,surpassing traditional inspection techniques.Building on this foundation,this paper delves into the optimization of UAV inspection routing and scheduling,addressing the complexity introduced by factors such as no-fly zones,monitoring-interval time windows,and multiple monitoring rounds.To tackle this challenging problem,we propose a mixed-integer linear programming(MILP)model that optimizes inspection task assignments,monitoring sequence schedules,and charging decisions.The comprehensive consideration of these factors differentiates our problem from conventional vehicle routing problem(VRP),leading to a mathematically intractable model for commercial solvers in the case of large-scale instances.To overcome this limitation,we design a tailored variable neighborhood search(VNS)metaheuristic,customizing the algorithm to efficiently solve our model.Extensive numerical experiments are conducted to validate the efficacy of our proposed algorithm,demonstrating its scalability for both large-scale and real-scale instances.Sensitivity experiments and a case study based on an actual engineering project are also conducted,providing valuable insights for engineering managers to enhance inspection work efficiency.
基金Supported by the National Natural Science Foundation of China (51174109)
文摘One-dimensional linear regression equation between measured value of air velocity transducer and the average air velocity was established by experimental data. The effect is to be evaluated. Through judging the parameters, one-dimensional linear equation established is valid. Regression equation can approximately put the measurements of air velocity transducer into the value of average air velocity. The distribution of air velocity field is simulated using Comsol in the conditions of the same length of roadway, the same air velocity and different sections.
基金Supported by the National Natural Science Foundation of China(5137504651205021)the Basic Research Foundation of Beijing Institute of Technology(20120342002)
文摘Aiming to improve the control accuracy of the vehicle height for the air suspension system,deeply analyzing the processes of variable mass gas thermodynamics and vehicle dynamics,a nonlinear height control model of the air suspension vehicle was built. To deal with the nonlinear characteristic existing in the lifting and lowering processes,the nonlinear model of vehicle height control was linearized by using a feedback linearization method. Then,based on the linear full vehicle model,the sliding model controller was designed to achieve the control variables. Finally,the nonlinear control algorithm in the original coordinates can be achieved by the inverse transformation of coordinates. To validate the accuracy and effectiveness of the sliding mode controller,the height control processes were simulated in Matlab,i. e.,the lifting and lowering processes of the air suspension vehicle were taken when vehicle was in stationary and driving at a constant speed. The simulation results show that,compared to other controllers,the designed sliding model controller based on the feedback linearization can effectively solve the "overshoot"problem,existing in the height control process,and force the vehicle height to reach the desired value,so as to greatly improve the speed and accuracy of the height control process. Besides,the sliding mode controller can well regulate the roll and pitch motions of the vehicle body,thereby improving the vehicle's ride comfort.
文摘This paper presents an improved design for the hypersonic reentry vehicle(HRV) by the trajectory linearization control(TLC) technology for the design of HRV. The physics-based model fails to take into account the external disturbance in the flight envelope in which the stability and control derivatives prove to be nonlinear and time-varying, which is likely in turn to increase the difficulty in keeping the stability of the attitude control system. Therefore, it is of great significance to modulate the unsteady and nonlinear characteristic features of the system parameters so as to overcome the disadvantages of the conventional TLC technology that can only be valid and efficient in the cases when there may exist any minor uncertainties. It is just for this kind of necessity that we have developed a fuzzy-neural disturbance observer(FNDO) based on the B-spline to estimate such uncertainties and disturbances concerned by establishing a new dynamic system. The simulation results gained by using the aforementioned technology and the observer show that it is just due to the innovation of the adaptive trajectory linearization control(ATLC) system. Significant improvement has been realized in the performance and the robustness of the system in addition to its fault tolerance.
文摘Is it possible to demonstrate the velocity addition without using a variable time (as it is done in theory of relativity)? The topic of this paper is to propose and demonstrate an alternative expres-sion based on the conservation of linear momenta. The method proposed here is to start from a physical object (and not from a mathematical point), i.e. from an object with a mass. And the hy-pothesis is inertial mass to be different from gravitational mass. Then, when impulses are added, we get an expression of the velocity addition itself. When numerical predictions are compared with experimental results, the differences are lower than the measures uncertainty. And these numerical results are much close to those predicts by the theory of relativity, nevertheless with a little difference at high velocities. If this demonstration and this expression were validated, it would allow giving an alternative explanation to some experiments and nature observations as Doppler Effect on light celerity. But first, it would be necessary to get from laboratories more precise experimental results, in order to validate or not this hypothesis of the sum of linear momenta with a Variable Inertial Mass.
基金supported in part by the National Natural Science Foundation of China under Grant 52022040in part by the Postgraduate Research&Practice Innovation Program of NUAA。
文摘For permanent magnet linear synchronous motor(PMLSM) working at trapezoidal speed for long time, high thrust brings high temperature rise, while low thrust limits dynamic performance. Thus, it is crucial to find a balance between temperature rise and dynamic performance. In this paper, a velocity planning model of the PMLSM at trapezoidal speed based on electromagnetic-fluid-thermal(EFT) field is proposed to obtain the optimal dynamic performance under temperature limitation. In this model, the winding loss is calculated considering the acceleration and deceleration time. The loss model is indirectly verified by the temperature rise experiment of an annular winding sample. The actual working conditions of the PMLSM are simulated by dynamic grid technology to research the influence of acceleration and deceleration on fluid flow in the air gap, and the variation rule of the thermal boundary condition is analyzed. Combined with the above conditions, the temperature rise of a coreless PMLSM(CPMLSM) under the rated working condition is calculated and analyzed in detail. Through this method and several iterations, the optimal dynamic performance under the temperature limitation is achieved. The result is verified by a comparison between simulation and prototype tests, which can help improve the dynamic performance.
基金supported in part by National Natural Science Foundation of China(52177194)in part by State Key Laboratory of Large Electric Drive System and Equipment Technology(SKLLDJ012016006)+1 种基金in part by Key Research and Development Project of ShaanXi Province(2019GY-060)in part by Key Laboratory of Industrial Automation in ShaanXi Province(SLGPT2019KF01-12)(。
文摘In this paper,a compound sliding mode velocity control scheme with a new exponential reaching law(NERL)with thrust ripple observation strategy is proposed to obtain a high performance velocity loop of the linear permanent magnet synchronous motor(LPMSM)control system.A sliding mode velocity controller based on NERL is firstly discussed to restrain chattering of the conventional exponential reaching law(CERL).Furthermore,the unavoidable thrust ripple caused by the special structure of linear motor will bring about velocity fluctuation and reduced control performance.Thus,a thrust ripple compensation strategy on the basis of extend Kalman filter(EKF)theory is proposed.The estimated thrust ripple will be introduced into the sliding mode velocity controller to optimize the control accuracy and robustness.The effectiveness of the proposal is validated with experimental results.
基金supported by the National Natural Science Foundation of China (No. 10632040)
文摘A kinetic model of the piecewise-linear nonlinear suspension system that consists of a dominant spring and an assistant spring is established. Bifurcation of the resonance solution to a suspension system with two degrees of freedom is investigated with the singularity theory. Transition sets of the system and 40 groups of bifurcation diagrams are obtained. The local bifurcation is found, and shows the overall character- istics of bifurcation. Based on the. relationship between parameters and the topological bifurcation solutions, motion characteristics with different parameters are obtained. The results provides a theoretical basis for the optimal control of vehicle suspension system parameters.
文摘In general, it is important to operate the; airgap length uniformly for improving the system efficiency independent of the flatness of the reaction plate in a railway propulsion system by a linear induction motor (LIM). And it is possible to operate the LIM propulsion system efficiently without a change of the LIM capacity through the airgap length control on the sloped rail. So, in this research, the authors introduce an airgap control system to control the airgap length which depends on the flatness of the secondary reaction plate when the LIM is operated, and design a rotary small-scaled LIM and its airgap control system before manufacturing the real system. Then, the authors analyze some characteristics of the LIM (thrust and normal force, input current, efficiency and power factor), and through the LIM control modeling, the authors finally analyze an effect of the airgap-length control of the LIM by the airgap control system.