Natural frequencies of the bridge—vehicle coupling system considering uniform distributed load varying with position is investigated in this work.An analytic model of a simply supported beam bridge with constant sect...Natural frequencies of the bridge—vehicle coupling system considering uniform distributed load varying with position is investigated in this work.An analytic model of a simply supported beam bridge with constant section is introduced to establish the frequency equations of the coupled system.Comparisons with the results between analytic model and FEM indicate that the present research is correct and reasonable.In view of an example bridge,natural frequencies are studied on the bridge subjected to uniform distributed moving loads in cases of different weight and span,by which some regular phenomenon are obtained.The present study can apply in the engineering problem of interaction between bridges and moving loads such as trains and tracked vehicles.展开更多
Accurate acid placement constitutes a major concern in matrix stimulation because the acid tends to penetrate the zones of least resistance while leaving the low-permeability regions of the formation untreated.Degrada...Accurate acid placement constitutes a major concern in matrix stimulation because the acid tends to penetrate the zones of least resistance while leaving the low-permeability regions of the formation untreated.Degradable materials(fibers and solid particles)have recently shown a good capability as fluid diversion to overcome the issues related to matrix stimulation.Despite the success achieved in the recent acid stimulation jobs stemming from the use of some products that rely on fiber flocculation as the main diverting mechanism,it was observed that the volume of the base fluid and the loading of the particles are not optimized.The current industry lacks a scientific design guideline because the used methodology is based on experience or empirical studies in a particular area with a particular product.It is important then to understand the fundamentals of how acid diversion works in carbonates with different diverting mechanisms and diverters.Mathematical modeling and computer simulations are effective tools to develop this understanding and are efficiently applied to new product development,new applications of existing products or usage optimization.In this work,we develop a numerical model to study fiber dynamics in fluid flow.We employ a discrete element method in which the fibers are represented by multi-rigid-body systems of interconnected spheres.The discrete fiber model is coupled with a fluid flow solver to account for the inherent simultaneous interactions.The focus of the study is on the tendency for fibers to flocculate and bridge when interacting with suspending fluids and encountering restrictions that can be representative of fractures or wormholes in carbonates.The trends of the dynamic fiber behavior under various operating conditions including fiber loading,flow rate and fluid viscosity obtained from the numerical model show consistency with experimental observations.The present numerical investigation reveals that the bridging capability of the fiber–fluid system can be enhanced by increasing the fiber loading,selecting fibers with higher stiffness,reducing the injection flow rate,reducing the suspending fluid viscosity or increasing the attractive cohesive forces among fibers by using sticky fibers.展开更多
面向随机车流的公路桥梁安全评估往往需要大量的车-桥耦合振动分析,然而,目前相关既有模拟方法运算效率有限,致使完成评估所需的分析耗时过久,无法及时提供评估结果。为此,该文以传统车-桥耦合振动分析理论为基础,提出了一种基于双向长...面向随机车流的公路桥梁安全评估往往需要大量的车-桥耦合振动分析,然而,目前相关既有模拟方法运算效率有限,致使完成评估所需的分析耗时过久,无法及时提供评估结果。为此,该文以传统车-桥耦合振动分析理论为基础,提出了一种基于双向长短期记忆(Bi-directional Long Short-Term Memory,BiLSTM)算法加速的随机车流-桥梁耦合振动分析方法。该方法可以从初期桥梁响应时程快速映射出对应的后序响应,相较传统方法压缩了部分迭代求解周期,从而提高整体计算效率。随后,选取四座常见的桥梁作为分析对象,同时针对性地提出加权平均绝对百分比误差(WMAPE)、加权决定系数(WR^(2))等改进评价指标,并以传统迭代法为参照,分析了该方法的精度、鲁棒性以及计算效率。分析结果显示:该文提出的方法有较好的鲁棒性,在不同随机车流密度、不同路面粗糙度等工况下对桥梁的弯矩、剪力、挠度等响应都具有较高的分析精度;与传统方法相比,该方法可以在WMAPE小于3.2%、峰值绝对误差(PAE)小于2.9%以及WR^(2)大于0.98的情况下,将随机车流下车-桥耦合振动响应的计算效率平均提高37.98%。这表明该方法可以在保证精度的前提下,有效提升随机车流-桥梁耦合振动分析效率,具备应用于桥梁结构快速分析、评估的潜力。展开更多
文摘Natural frequencies of the bridge—vehicle coupling system considering uniform distributed load varying with position is investigated in this work.An analytic model of a simply supported beam bridge with constant section is introduced to establish the frequency equations of the coupled system.Comparisons with the results between analytic model and FEM indicate that the present research is correct and reasonable.In view of an example bridge,natural frequencies are studied on the bridge subjected to uniform distributed moving loads in cases of different weight and span,by which some regular phenomenon are obtained.The present study can apply in the engineering problem of interaction between bridges and moving loads such as trains and tracked vehicles.
文摘Accurate acid placement constitutes a major concern in matrix stimulation because the acid tends to penetrate the zones of least resistance while leaving the low-permeability regions of the formation untreated.Degradable materials(fibers and solid particles)have recently shown a good capability as fluid diversion to overcome the issues related to matrix stimulation.Despite the success achieved in the recent acid stimulation jobs stemming from the use of some products that rely on fiber flocculation as the main diverting mechanism,it was observed that the volume of the base fluid and the loading of the particles are not optimized.The current industry lacks a scientific design guideline because the used methodology is based on experience or empirical studies in a particular area with a particular product.It is important then to understand the fundamentals of how acid diversion works in carbonates with different diverting mechanisms and diverters.Mathematical modeling and computer simulations are effective tools to develop this understanding and are efficiently applied to new product development,new applications of existing products or usage optimization.In this work,we develop a numerical model to study fiber dynamics in fluid flow.We employ a discrete element method in which the fibers are represented by multi-rigid-body systems of interconnected spheres.The discrete fiber model is coupled with a fluid flow solver to account for the inherent simultaneous interactions.The focus of the study is on the tendency for fibers to flocculate and bridge when interacting with suspending fluids and encountering restrictions that can be representative of fractures or wormholes in carbonates.The trends of the dynamic fiber behavior under various operating conditions including fiber loading,flow rate and fluid viscosity obtained from the numerical model show consistency with experimental observations.The present numerical investigation reveals that the bridging capability of the fiber–fluid system can be enhanced by increasing the fiber loading,selecting fibers with higher stiffness,reducing the injection flow rate,reducing the suspending fluid viscosity or increasing the attractive cohesive forces among fibers by using sticky fibers.
文摘面向随机车流的公路桥梁安全评估往往需要大量的车-桥耦合振动分析,然而,目前相关既有模拟方法运算效率有限,致使完成评估所需的分析耗时过久,无法及时提供评估结果。为此,该文以传统车-桥耦合振动分析理论为基础,提出了一种基于双向长短期记忆(Bi-directional Long Short-Term Memory,BiLSTM)算法加速的随机车流-桥梁耦合振动分析方法。该方法可以从初期桥梁响应时程快速映射出对应的后序响应,相较传统方法压缩了部分迭代求解周期,从而提高整体计算效率。随后,选取四座常见的桥梁作为分析对象,同时针对性地提出加权平均绝对百分比误差(WMAPE)、加权决定系数(WR^(2))等改进评价指标,并以传统迭代法为参照,分析了该方法的精度、鲁棒性以及计算效率。分析结果显示:该文提出的方法有较好的鲁棒性,在不同随机车流密度、不同路面粗糙度等工况下对桥梁的弯矩、剪力、挠度等响应都具有较高的分析精度;与传统方法相比,该方法可以在WMAPE小于3.2%、峰值绝对误差(PAE)小于2.9%以及WR^(2)大于0.98的情况下,将随机车流下车-桥耦合振动响应的计算效率平均提高37.98%。这表明该方法可以在保证精度的前提下,有效提升随机车流-桥梁耦合振动分析效率,具备应用于桥梁结构快速分析、评估的潜力。