A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solu...A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking.展开更多
To numerically evaluate the reinforcement effect on dynamic characteristics of a concrete-filled steel tube arch bridge with vibration problems,a 12-degree-of-freedom sprung-mass dynamic vehicle model and a 3D finite ...To numerically evaluate the reinforcement effect on dynamic characteristics of a concrete-filled steel tube arch bridge with vibration problems,a 12-degree-of-freedom sprung-mass dynamic vehicle model and a 3D finite element bridge model were established.Then,the coupled equations of vehicle-bridge interaction were derived and a computer program was developed using the FORTRAN language.This program can accurately simulate vehicle-bridge coupled vibration considering the bumping effect and road surface irregularity during motion of the vehicle.The simulated results were compared with those of relevant literatures to verify the correctness of the self-developed program.Then,three reinforcement schemes for the bridge(Addition of longitudinal beams,Reinforcement of bridge decks,and Replacement of suspenders)were proposed and numerically simulated,and the vibration reduction effects of the three schemes were evaluated based on the numerical results to find effective ones.It is confirmed that the reinforcement scheme of Addition of longitudinal beams shows the most significant vibration reduction effect.It is recommended in the engineering practice that the combination of the reinforcement schemes of Addition of longitudinal beams and Replacement of bridge deck can be used to solve the excessive vibration problem.展开更多
By applying the sinusoidal wave mode to simulate the rugged surface of bridge deck,accounting for vehicle-bridge interaction and using Euler-Bernoulli beam theory, a coupling vibration model of vehicle-bridge system w...By applying the sinusoidal wave mode to simulate the rugged surface of bridge deck,accounting for vehicle-bridge interaction and using Euler-Bernoulli beam theory, a coupling vibration model of vehicle-bridge system was developed. The model was solved by mode analyzing method and Runge-Kutta method, and the dynamic response and the resonance curve of the bridge were obtained. It is found that there are two resonance regions, one represents the main resonance while the other the minor resonance, in the resonance curve. The influence due to the rugged surface, the vibration mode of bridge, and the interaction between vehicle and bridge on vibration of the system were discussed. Numerical results show that the influence due to these parameters is so significant that the effect of roughness of the bridge deck and the mode shape of the bridge can't be ignored and the vehicle velocity should be kept away from the critical speed of the vehicle.展开更多
The objective of this study is to investigate the effects of earthquakes on road vehicle-bridge coupling vibration systems. A two-axle highway freight vehicle is treated as a 13 degree-of-freedom system composed of se...The objective of this study is to investigate the effects of earthquakes on road vehicle-bridge coupling vibration systems. A two-axle highway freight vehicle is treated as a 13 degree-of-freedom system composed of several rigid bodies, which are connected by a series of springs and dampers. The framework of the earthquake-vehicle-bridge dynamic analysis system is then established using an earthquake as the extemal excitation. The equivalent lateral contact force serves as the judgment criteria for sideslip accidents according to reliability theory. The entire process of the vehicle crossing the bridge is considered for a very high pier continuous rigid frame bridge. The response characteristics of the vehicle and the bridge are discussed in terms of various parameters such as earthquake ground motion, PGA value of the earthquake, incident angle, pier height, vehicle speed and mass. It is found that seismic excitation is the most influential factor in the responses of the vehicle-bridge system and that the safety of vehicles crossing the bridge is seriously impacted by the dual excitations of earthquake and bridge vibration.展开更多
To systematically study the vehicle-bridge coupled dynamic response and its change rule with different parameters, a vehicle model with seven degrees of freedom was built and the total potential energy of vehicle spac...To systematically study the vehicle-bridge coupled dynamic response and its change rule with different parameters, a vehicle model with seven degrees of freedom was built and the total potential energy of vehicle space vibration system was deduced. Considering the stimulation of road roughness, the dynamic response equation of vehicle-bridge coupled system was established in accordance with the elastic system principle of total potential energy with stationary value and the "set-in-right-position" rule. On the basis of the self-compiled Fortran program and bridge engineering, the dynamic response of long- span continuous girder bridge under vehicle load was studied. This study also included the calculation of vehicle impact coefficient, evaluation of vibration comfort, and analysis of dynamic response parameters. Results show the impact coefficient changes with lane number and is larger than the value calculated by the "general code for design of highway bridges and culverts (China)". The Dieckmann index of bridge vibration is also related to lane number, and the vibration comfort evaluation is good in normal conditions. The relevant conclusions from parametric analyses have practical significance to dynamic design and daily operation of long-span continuous girder bridges in expressways. Safety and comfort are expected to improve significantly with further control of the vibration of vehicle-bridge system.展开更多
Purpose–This paper aims to study the influence of aerodynamics force of trains passing each other on the dynamic response of vehicle bridge coupling system based on numerical simulation and multi-body dynamics and pu...Purpose–This paper aims to study the influence of aerodynamics force of trains passing each other on the dynamic response of vehicle bridge coupling system based on numerical simulation and multi-body dynamics and put forward the speed threshold for safe running of train under different crosswind speeds.Design/methodology/approach–The computational fluid dynamics method is adopted to simulate the aerodynamic force in the whole process of train passing each other by using dynamic grid technology.The dynamic model of vehicle-bridge coupling system is established considering the effects of aerodynamic force of train passing each other under crosswind,the dynamic response of train intersection on the bridge under crosswind is computed and the running safety of the train is evaluated.Findings–The aerodynamic force of trains’intersection has little effects on the derailment factor,lateral wheel-rail force and vertical acceleration of train,but it increases the offload factor of train and significantly increases the lateral acceleration of train.The crosswind has a significant effect on increasing the derailment factor,lateral wheel-rail force and offload factor of train.The offload factor of train is the key factor to control the threshold of train speed.The impact of the aerodynamic force of trains’intersection on running safety cannot be ignored.When the extreme values of crosswind wind speed are 15 m$s1,20 m$s1 and 25 m$s1,respectively,the corresponding speed thresholds for safe running of train are 350 km$h1,275 km$h1 and 200 km$h1,respectively.Originality/value–The research can provide a more precise numerical method to study the running safety of high-speed trains under the aerodynamic effect of trains passing each other on bridge in crosswind.展开更多
Numerical analyses of the coupled vibrations of vehicle-bridge system and the effects of different types of cable stayed bridges on the coupled vibration responses have been presented in this paper using ANSYS. The br...Numerical analyses of the coupled vibrations of vehicle-bridge system and the effects of different types of cable stayed bridges on the coupled vibration responses have been presented in this paper using ANSYS. The bridge model and vehicle model were independently built which have no internal relationship in the ANSYS. The vehicle-bridge coupled vibration relationship was obtained by using the APDL program which subsequently imposed on the vehicle and bridge models during the numerical analysis. The proposed model was validated through a field measurements and literature data. The judging method, possibility, and criterion of the vehicle-bridge resonance (coupled vibrations) of cable stayed bridges (both the floating system and half floating system) under traffic flows were presented. The results indicated that the interval time between vehicles is the main influence factor on the resonance excitation frequency under the condition of equally spaced traffic flows. Compared to other types of cable stayed bridges, the floating bridge system has relatively high possibility to cause vehicle-bridge resonance.展开更多
In this work,a monorail vehicle-bridge coupling(VBC)model capable of accurately considering curve alignment and superelevation is established based on curvilinear moving coordinate system,to study the VBC vibration of...In this work,a monorail vehicle-bridge coupling(VBC)model capable of accurately considering curve alignment and superelevation is established based on curvilinear moving coordinate system,to study the VBC vibration of straddlemonorail curved girder bridge and the relevant factors influencing VBC.While taking Chongqing Jiao Xin line as an example,the VBC program is compiled using Fortran,where the reliability of algorithm and program is verified by the results of Chongqing monorail test.Moreover,the effects of curve radius,vehicle speed,and track irregularity on the corresponding vehicle and bridge vibrations are compared and analyzed.It is observed that the test results of lateral vibration acceleration(LVA)and vertical vibration acceleration(VVA)of track beam,and LVA of vehicle,are consistent with the simulation results.Owing to the track irregularity,vibration of track beam and vehicle increases significantly.Besides,an increase in vehicle speed gradually increases the vibration of track beam and vehicle.For the curve radius(R)≤200 m,lateral and vertical vibrations of the track beam and vehicle decrease significantly with an increasing curve radius.Alternatively,when 200 m<R<600 m,the lateral vibration of the track beamand vehicle decreases slowly with an increasing curve radius,while the relevant vertical vibration remains stable.Similarly,when R≥600 m,the lateral and vertical vibrations of the track beam and vehicle tend to be stable.Accordingly,the results presented here can provide a strong reference for the design,construction,and safety assessment of existing bridges.展开更多
A long-span concrete-filled steel tubular(CFST)arch bridge suffers severe vehicle-induced dynamic responses during its service life.However,few quantitative studies have been reported on the typical diseases suffered ...A long-span concrete-filled steel tubular(CFST)arch bridge suffers severe vehicle-induced dynamic responses during its service life.However,few quantitative studies have been reported on the typical diseases suffered by such bridges and their effects on vehicle-induced dynamic response.Thus,a series of field tests and theoretical analyses were conducted to study the effects of typical diseases on the vehicle-induced dynamic response of a typical CFST arch bridge.The results show that a support void results in a height difference between both sides of the expansion joint,thus increasing the effect of vehicle impact on the main girder and suspenders.The impact factor of the displacement response of the main girder exceeds the design value.The variation of the suspender force is significant,and the diseases are found to have a greater effect on a shorter suspender.The theoretical analysis results also show that the support void causes an obvious longitudinal displacement of the main girder that is almost as large as the vertical displacement.The support void can also cause significant changes in the vehicle-induced acceleration response,particularly when the supports and steel box girder continue to collide with each other under the vehicle load.展开更多
In this paper, we present a method for simultaneously identifying the vehicular parameters and the structural damage of bridges. By using the dynamic response data of bridge in coupled vibration state and the algorith...In this paper, we present a method for simultaneously identifying the vehicular parameters and the structural damage of bridges. By using the dynamic response data of bridge in coupled vibration state and the algorithm for the inverse problem, the vehicle-bridge coupling model is built through combining the motion equations of both vehicle and the bridge based on their interaction force relationship at contact point. Load shape function method and Newmark iterative method are used to solve the vibration response of the coupled system. Penalty function method and regularization method are interchangeable in the process until the error is less than the allowable value. The proposed method is applied on a single-span girders bridge, and the recognition results verify the feasibility, high accuracy and robustness of the method.展开更多
基金supported by the Henan Provincial Science and Technology Research Project under Grant(152102310295).
文摘A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking.
基金This work is supported by the Natural Science Foundation Projects of Liaoning Province(2019-ZD-0145).
文摘To numerically evaluate the reinforcement effect on dynamic characteristics of a concrete-filled steel tube arch bridge with vibration problems,a 12-degree-of-freedom sprung-mass dynamic vehicle model and a 3D finite element bridge model were established.Then,the coupled equations of vehicle-bridge interaction were derived and a computer program was developed using the FORTRAN language.This program can accurately simulate vehicle-bridge coupled vibration considering the bumping effect and road surface irregularity during motion of the vehicle.The simulated results were compared with those of relevant literatures to verify the correctness of the self-developed program.Then,three reinforcement schemes for the bridge(Addition of longitudinal beams,Reinforcement of bridge decks,and Replacement of suspenders)were proposed and numerically simulated,and the vibration reduction effects of the three schemes were evaluated based on the numerical results to find effective ones.It is confirmed that the reinforcement scheme of Addition of longitudinal beams shows the most significant vibration reduction effect.It is recommended in the engineering practice that the combination of the reinforcement schemes of Addition of longitudinal beams and Replacement of bridge deck can be used to solve the excessive vibration problem.
文摘By applying the sinusoidal wave mode to simulate the rugged surface of bridge deck,accounting for vehicle-bridge interaction and using Euler-Bernoulli beam theory, a coupling vibration model of vehicle-bridge system was developed. The model was solved by mode analyzing method and Runge-Kutta method, and the dynamic response and the resonance curve of the bridge were obtained. It is found that there are two resonance regions, one represents the main resonance while the other the minor resonance, in the resonance curve. The influence due to the rugged surface, the vibration mode of bridge, and the interaction between vehicle and bridge on vibration of the system were discussed. Numerical results show that the influence due to these parameters is so significant that the effect of roughness of the bridge deck and the mode shape of the bridge can't be ignored and the vehicle velocity should be kept away from the critical speed of the vehicle.
基金National Natural Science Foundation of China under Grant NNSF-50508036New Century Excellent Talents in University of China Under Grant NCET-06-0802Outstanding Young Academic Leaders Program of Sichuan Province Under Grant 2009-15-406
文摘The objective of this study is to investigate the effects of earthquakes on road vehicle-bridge coupling vibration systems. A two-axle highway freight vehicle is treated as a 13 degree-of-freedom system composed of several rigid bodies, which are connected by a series of springs and dampers. The framework of the earthquake-vehicle-bridge dynamic analysis system is then established using an earthquake as the extemal excitation. The equivalent lateral contact force serves as the judgment criteria for sideslip accidents according to reliability theory. The entire process of the vehicle crossing the bridge is considered for a very high pier continuous rigid frame bridge. The response characteristics of the vehicle and the bridge are discussed in terms of various parameters such as earthquake ground motion, PGA value of the earthquake, incident angle, pier height, vehicle speed and mass. It is found that seismic excitation is the most influential factor in the responses of the vehicle-bridge system and that the safety of vehicles crossing the bridge is seriously impacted by the dual excitations of earthquake and bridge vibration.
基金provided by the National Natural Science Foundation of China (51378504)Funding Project of Traffic Science and Technology Program of Hunan Province (201022)
文摘To systematically study the vehicle-bridge coupled dynamic response and its change rule with different parameters, a vehicle model with seven degrees of freedom was built and the total potential energy of vehicle space vibration system was deduced. Considering the stimulation of road roughness, the dynamic response equation of vehicle-bridge coupled system was established in accordance with the elastic system principle of total potential energy with stationary value and the "set-in-right-position" rule. On the basis of the self-compiled Fortran program and bridge engineering, the dynamic response of long- span continuous girder bridge under vehicle load was studied. This study also included the calculation of vehicle impact coefficient, evaluation of vibration comfort, and analysis of dynamic response parameters. Results show the impact coefficient changes with lane number and is larger than the value calculated by the "general code for design of highway bridges and culverts (China)". The Dieckmann index of bridge vibration is also related to lane number, and the vibration comfort evaluation is good in normal conditions. The relevant conclusions from parametric analyses have practical significance to dynamic design and daily operation of long-span continuous girder bridges in expressways. Safety and comfort are expected to improve significantly with further control of the vibration of vehicle-bridge system.
基金supported by the National Natural Science Foundation of China(Project no.52078489)and the Fundamental Research Funds for the Central Universities of Central South University(Project no.2021zzts0772)to which the authors are most grateful.
文摘Purpose–This paper aims to study the influence of aerodynamics force of trains passing each other on the dynamic response of vehicle bridge coupling system based on numerical simulation and multi-body dynamics and put forward the speed threshold for safe running of train under different crosswind speeds.Design/methodology/approach–The computational fluid dynamics method is adopted to simulate the aerodynamic force in the whole process of train passing each other by using dynamic grid technology.The dynamic model of vehicle-bridge coupling system is established considering the effects of aerodynamic force of train passing each other under crosswind,the dynamic response of train intersection on the bridge under crosswind is computed and the running safety of the train is evaluated.Findings–The aerodynamic force of trains’intersection has little effects on the derailment factor,lateral wheel-rail force and vertical acceleration of train,but it increases the offload factor of train and significantly increases the lateral acceleration of train.The crosswind has a significant effect on increasing the derailment factor,lateral wheel-rail force and offload factor of train.The offload factor of train is the key factor to control the threshold of train speed.The impact of the aerodynamic force of trains’intersection on running safety cannot be ignored.When the extreme values of crosswind wind speed are 15 m$s1,20 m$s1 and 25 m$s1,respectively,the corresponding speed thresholds for safe running of train are 350 km$h1,275 km$h1 and 200 km$h1,respectively.Originality/value–The research can provide a more precise numerical method to study the running safety of high-speed trains under the aerodynamic effect of trains passing each other on bridge in crosswind.
文摘Numerical analyses of the coupled vibrations of vehicle-bridge system and the effects of different types of cable stayed bridges on the coupled vibration responses have been presented in this paper using ANSYS. The bridge model and vehicle model were independently built which have no internal relationship in the ANSYS. The vehicle-bridge coupled vibration relationship was obtained by using the APDL program which subsequently imposed on the vehicle and bridge models during the numerical analysis. The proposed model was validated through a field measurements and literature data. The judging method, possibility, and criterion of the vehicle-bridge resonance (coupled vibrations) of cable stayed bridges (both the floating system and half floating system) under traffic flows were presented. The results indicated that the interval time between vehicles is the main influence factor on the resonance excitation frequency under the condition of equally spaced traffic flows. Compared to other types of cable stayed bridges, the floating bridge system has relatively high possibility to cause vehicle-bridge resonance.
基金The authors gratefully acknowledge the partial support of this research by the Tianjin Natural Science Foundation(Nos.18JCQNJC08300,18JCYBJC90800)the National Natural Science Foundation of China(No.52108333)+4 种基金Tianjin Transportation Science and Technology Development Plan(2021-20)the Key Laboratory of Road Structure and Materials Transportation Industry(No.310821171114)the Innovation Capability Support Plan of Shaanxi Province(No.2019KJXX-036)the Scientific Research Project of Tianjin Education Commission(No.2020KJ038)the Department of Science and Technology of Shaanxi Province Focuses on Research and Development of General Project Industrial Field(No.2020GY318).
文摘In this work,a monorail vehicle-bridge coupling(VBC)model capable of accurately considering curve alignment and superelevation is established based on curvilinear moving coordinate system,to study the VBC vibration of straddlemonorail curved girder bridge and the relevant factors influencing VBC.While taking Chongqing Jiao Xin line as an example,the VBC program is compiled using Fortran,where the reliability of algorithm and program is verified by the results of Chongqing monorail test.Moreover,the effects of curve radius,vehicle speed,and track irregularity on the corresponding vehicle and bridge vibrations are compared and analyzed.It is observed that the test results of lateral vibration acceleration(LVA)and vertical vibration acceleration(VVA)of track beam,and LVA of vehicle,are consistent with the simulation results.Owing to the track irregularity,vibration of track beam and vehicle increases significantly.Besides,an increase in vehicle speed gradually increases the vibration of track beam and vehicle.For the curve radius(R)≤200 m,lateral and vertical vibrations of the track beam and vehicle decrease significantly with an increasing curve radius.Alternatively,when 200 m<R<600 m,the lateral vibration of the track beamand vehicle decreases slowly with an increasing curve radius,while the relevant vertical vibration remains stable.Similarly,when R≥600 m,the lateral and vertical vibrations of the track beam and vehicle tend to be stable.Accordingly,the results presented here can provide a strong reference for the design,construction,and safety assessment of existing bridges.
基金This research was supported by the National Natural Science Foundation of China(Grant Nos.51908015,51978021)National Key Research and Development Program of China(Grant Nos.2017YFC1500604,2017YFC1500603)+1 种基金Beijing Municipal Education Commission(Nos.KM201910005020,IDHT20190504)the Basic Research Fund of Beijing University of Technology(No.004000546318524).
文摘A long-span concrete-filled steel tubular(CFST)arch bridge suffers severe vehicle-induced dynamic responses during its service life.However,few quantitative studies have been reported on the typical diseases suffered by such bridges and their effects on vehicle-induced dynamic response.Thus,a series of field tests and theoretical analyses were conducted to study the effects of typical diseases on the vehicle-induced dynamic response of a typical CFST arch bridge.The results show that a support void results in a height difference between both sides of the expansion joint,thus increasing the effect of vehicle impact on the main girder and suspenders.The impact factor of the displacement response of the main girder exceeds the design value.The variation of the suspender force is significant,and the diseases are found to have a greater effect on a shorter suspender.The theoretical analysis results also show that the support void causes an obvious longitudinal displacement of the main girder that is almost as large as the vertical displacement.The support void can also cause significant changes in the vehicle-induced acceleration response,particularly when the supports and steel box girder continue to collide with each other under the vehicle load.
基金Supported by the National Natural Science Foundation of China(41402271)Guizhou Science and Technology Cooperation Project(LH[2016]7043)Young Science and Technology Talents Growth Project of Guizhou Provincial Department of Education(KY-[2016]-282)
文摘In this paper, we present a method for simultaneously identifying the vehicular parameters and the structural damage of bridges. By using the dynamic response data of bridge in coupled vibration state and the algorithm for the inverse problem, the vehicle-bridge coupling model is built through combining the motion equations of both vehicle and the bridge based on their interaction force relationship at contact point. Load shape function method and Newmark iterative method are used to solve the vibration response of the coupled system. Penalty function method and regularization method are interchangeable in the process until the error is less than the allowable value. The proposed method is applied on a single-span girders bridge, and the recognition results verify the feasibility, high accuracy and robustness of the method.