The advent of self-attention mechanisms within Transformer models has significantly propelled the advancement of deep learning algorithms,yielding outstanding achievements across diverse domains.Nonetheless,self-atten...The advent of self-attention mechanisms within Transformer models has significantly propelled the advancement of deep learning algorithms,yielding outstanding achievements across diverse domains.Nonetheless,self-attention mechanisms falter when applied to datasets with intricate semantic content and extensive dependency structures.In response,this paper introduces a Diffusion Sampling and Label-Driven Co-attention Neural Network(DSLD),which adopts a diffusion sampling method to capture more comprehensive semantic information of the data.Additionally,themodel leverages the joint correlation information of labels and data to introduce the computation of text representation,correcting semantic representationbiases in thedata,andincreasing the accuracyof semantic representation.Ultimately,the model computes the corresponding classification results by synthesizing these rich data semantic representations.Experiments on seven benchmark datasets show that our proposed model achieves competitive results compared to state-of-the-art methods.展开更多
This study aims to investigate mechanical properties and failure mechanisms of layered rock with rough joint surfaces under direct shear loading.Cubic layered samples with dimensions of 100 mm×100 mm×100 mm ...This study aims to investigate mechanical properties and failure mechanisms of layered rock with rough joint surfaces under direct shear loading.Cubic layered samples with dimensions of 100 mm×100 mm×100 mm were casted using rock-like materials,with anisotropic angle(α)and joint roughness coefficient(JRC)ranging from 15°to 75°and 2-20,respectively.The direct shear tests were conducted under the application of initial normal stress(σ_(n)) ranging from 1-4 MPa.The test results indicate significant differences in mechanical properties,acoustic emission(AE)responses,maximum principal strain fields,and ultimate failure modes of layered samples under different test conditions.The peak stress increases with the increasingαand achieves a maximum value atα=60°or 75°.As σ_(n) increases,the peak stress shows an increasing trend,with correlation coefficients R² ranging from 0.918 to 0.995 for the linear least squares fitting.As JRC increases from 2-4 to 18-20,the cohesion increases by 86.32%whenα=15°,while the cohesion decreases by 27.93%whenα=75°.The differences in roughness characteristics of shear failure surface induced byαresult in anisotropic post-peak AE responses,which is characterized by active AE signals whenαis small and quiet AE signals for a largeα.For a given JRC=6-8 andσ_(n)=1 MPa,asαincreases,the accumulative AE counts increase by 224.31%(αincreased from 15°to 60°),and then decrease by 14.68%(αincreased from 60°to 75°).The shear failure surface is formed along the weak interlayer whenα=15°and penetrates the layered matrix whenα=60°.Whenα=15°,as σ_(n) increases,the adjacent weak interlayer induces a change in the direction of tensile cracks propagation,resulting in a stepped pattern of cracks distribution.The increase in JRC intensifies roughness characteristics of shear failure surface for a smallα,however,it is not pronounced for a largeα.The findings will contribute to a better understanding of the mechanical responses and failure mechanisms of the layered rocks subjected to shear loads.展开更多
Material identification is critical for understanding the relationship between mechanical properties and the associated mechanical functions.However,material identification is a challenging task,especially when the ch...Material identification is critical for understanding the relationship between mechanical properties and the associated mechanical functions.However,material identification is a challenging task,especially when the characteristic of the material is highly nonlinear in nature,as is common in biological tissue.In this work,we identify unknown material properties in continuum solid mechanics via physics-informed neural networks(PINNs).To improve the accuracy and efficiency of PINNs,we develop efficient strategies to nonuniformly sample observational data.We also investigate different approaches to enforce Dirichlet-type boundary conditions(BCs)as soft or hard constraints.Finally,we apply the proposed methods to a diverse set of time-dependent and time-independent solid mechanic examples that span linear elastic and hyperelastic material space.The estimated material parameters achieve relative errors of less than 1%.As such,this work is relevant to diverse applications,including optimizing structural integrity and developing novel materials.展开更多
The study of river dynamics requires knowledge of physical parameters, such as porosity, permeability, and wave propagation velocity, of river-bottom sediments. To do so, sediment properties are determined on mechanic...The study of river dynamics requires knowledge of physical parameters, such as porosity, permeability, and wave propagation velocity, of river-bottom sediments. To do so, sediment properties are determined on mechanically sampled specimens and from subbottom profiling. However, mechanical sampling introduces disturbances that affect test results, with the exception of grain-size distribution. In this study, we perform inversion of acoustic data using the grain-size distribution of mechanically sampled specimens and the relation between porosity and permeability from the Kozeny-Carman equation as prior information. The wave reflection coefficient of the water-silt interface is extracted from the raw subbottom profile. Based on the effective density fluid model, we combine the Kozeny-Carman equation and the wave reflection coefficient. We use experimental data from two Yellow River reservoirs to obtain the wave velocity and density of multiple sections and their spatial variations, and find that the inversion and testing results are in good agreement.展开更多
Soft rocks, such as coal, are afected by sedimentary efects, and the surrounding rock mass of underground coal mines is generally soft and rich in joints and cracks. A clear and deep understanding of the relationship ...Soft rocks, such as coal, are afected by sedimentary efects, and the surrounding rock mass of underground coal mines is generally soft and rich in joints and cracks. A clear and deep understanding of the relationship between crack geometric parameters and rock mechanics properties in cracked rock is greatly important to the design of engineering rock mass struc‑tures. In this study, computed tomography (CT) scanning was used to extract the internal crack network of coal specimens. Based on the crack size and dominant crack number, the parameters of crack area, volume, length, width, and angle were statistically analyzed by diferent sampling thresholds. In addition, the Pearson correlation coefcients between the crack parameters and uniaxial compression rock mechanics properties (uniaxial compressive strength UCS, elasticity modulus E) were calculated to quantitatively analyze the impact of each parameter. Furthermore, a method based on Pearson coefcients was used to grade the correlation between crack geometric parameters and rock mechanical properties to determine threshold values. The results indicated that the UCS and E of the specimens changed with the varied internal crack structures of the specimens, the crack parameters of area, volume, length and width all showed negative correlations with UCS and E, and the dominant crack played an important role both in weakening strength and stifness. The crack parameters of the angle are all positively correlated with the UCS and E. More crack statistics can signifcantly improve the correlation between the parameters of the crack angle and the rock mechanics properties, and the statistics of the geometric parameters of at least 16 cracks or the area larger than 5 mm2 are suggested for the analysis of complex cracked rock masses or physical reproduction using 3D printing. The results are validated and further analyzed with triaxial tests. The fndings of this study have important reference value for future research regarding the accurate and efcient selection of a few cracks with a signifcant infuence on the rock mechanical properties of surrounding rock mass structures in coal engineering.展开更多
The encapsulation of lunar samples is a core research area in the third phase of the Chinese Lunar Exploration Program.The seal assembly,opening and closing mechanism(OCM),and locking mechanism are the core components...The encapsulation of lunar samples is a core research area in the third phase of the Chinese Lunar Exploration Program.The seal assembly,opening and closing mechanism(OCM),and locking mechanism are the core components of the encapsulation device of the lunar samples,and the requirements of a tight seal,lightweight,and low power make the design of these core components difficult.In this study,a combined sealing assembly,OCM,and locking mechanism were investigated for the device.The sealing architecture consists of rubber and an Ag-In alloy,and a theory was built to analyze the seal.Experiments of the electroplate Au coating on the knife-edge revealed that the hermetic seal can be significantly improved.The driving principle for coaxial double-helical pairs was investigated and used to design the OCM.Moreover,a locking mechanism was created using an electric initiating explosive device with orifice damping.By optimizing the design,the output parameters were adjusted to meet the requirements of the lunar explorer.The experimental results showed that the helium leak rate of the test pieces were not more than 5×10^(-11) Pa·m^(3)·s^(-1),the minimum power of the OCM was 0.3 W,and the total weight of the principle prototype was 2.9 kg.The explosive driven locking mechanism has low impact.This investigation solved the difficulties in achieving tight seal,light weight,and low power for the lunar explorer,and the results can also be used to explore other extraterrestrial objects in the future.展开更多
In this work,an adaptive sampling control strategy for distributed predictive control is proposed.According to the proposed method,the sampling rate of each subsystem of the accused object is determined based on the p...In this work,an adaptive sampling control strategy for distributed predictive control is proposed.According to the proposed method,the sampling rate of each subsystem of the accused object is determined based on the periodic detection of its dynamic behavior and calculations made using a correlation function.Then,the optimal sampling interval within the period is obtained and sent to the corresponding sub-prediction controller,and the sampling interval of the controller is changed accordingly before the next sampling period begins.In the next control period,the adaptive sampling mechanism recalculates the sampling rate of each subsystem’s measurable output variable according to both the abovementioned method and the change in the dynamic behavior of the entire system,and this process is repeated.Such an adaptive sampling interval selection based on an autocorrelation function that measures dynamic behavior can dynamically optimize the selection of sampling rate according to the real-time change in the dynamic behavior of the controlled object.It can also accurately capture dynamic changes,meaning that each sub-prediction controller can more accurately calculate the optimal control quantity at the next moment,significantly improving the performance of distributed model predictive control(DMPC).A comparison demonstrates that the proposed adaptive sampling DMPC algorithm has better tracking performance than the traditional DMPC algorithm.展开更多
Traditional object detectors based on deep learning rely on plenty of labeled samples,which are expensive to obtain.Few-shot object detection(FSOD)attempts to solve this problem,learning detection objects from a few l...Traditional object detectors based on deep learning rely on plenty of labeled samples,which are expensive to obtain.Few-shot object detection(FSOD)attempts to solve this problem,learning detection objects from a few labeled samples,but the performance is often unsatisfactory due to the scarcity of samples.We believe that the main reasons that restrict the performance of few-shot detectors are:(1)the positive samples is scarce,and(2)the quality of positive samples is low.Therefore,we put forward a novel few-shot object detector based on YOLOv4,starting from both improving the quantity and quality of positive samples.First,we design a hybrid multivariate positive sample augmentation(HMPSA)module to amplify the quantity of positive samples and increase positive sample diversity while suppressing negative samples.Then,we design a selective non-local fusion attention(SNFA)module to help the detector better learn the target features and improve the feature quality of positive samples.Finally,we optimize the loss function to make it more suitable for the task of FSOD.Experimental results on PASCAL VOC and MS COCO demonstrate that our designed few-shot object detector has competitive performance with other state-of-the-art detectors.展开更多
大数据时代,越来越多的数据以数据流的形式产生,由于其具有快速、无限、不稳定及动态变化等特性,使得概念漂移成为流数据挖掘中一个重要但困难的问题.目前多数概念漂移处理方法存在信息提取能力有限且未充分考虑流数据的时序特性等问题...大数据时代,越来越多的数据以数据流的形式产生,由于其具有快速、无限、不稳定及动态变化等特性,使得概念漂移成为流数据挖掘中一个重要但困难的问题.目前多数概念漂移处理方法存在信息提取能力有限且未充分考虑流数据的时序特性等问题.针对这些问题,提出一种基于混合特征提取的流数据概念漂移处理方法(concept drift processing method of streaming data based on mixed feature extraction,MFECD).该方法首先采用不同尺度的卷积核对数据进行建模以构建拼接特征,采用门控机制将浅层输入和拼接特征融合,作为不同网络层次输入进行自适应集成,以获得能够兼顾细节信息和语义信息的数据特性.在此基础上,采用注意力机制和相似度计算评估流数据不同时刻的重要性,以增强数据流关键位点的时序特性.实验结果表明,该方法能有效提取流数据中包含的复杂数据特征和时序特征,提高了数据流中概念漂移的处理能力.展开更多
基金the Communication University of China(CUC230A013)the Fundamental Research Funds for the Central Universities.
文摘The advent of self-attention mechanisms within Transformer models has significantly propelled the advancement of deep learning algorithms,yielding outstanding achievements across diverse domains.Nonetheless,self-attention mechanisms falter when applied to datasets with intricate semantic content and extensive dependency structures.In response,this paper introduces a Diffusion Sampling and Label-Driven Co-attention Neural Network(DSLD),which adopts a diffusion sampling method to capture more comprehensive semantic information of the data.Additionally,themodel leverages the joint correlation information of labels and data to introduce the computation of text representation,correcting semantic representationbiases in thedata,andincreasing the accuracyof semantic representation.Ultimately,the model computes the corresponding classification results by synthesizing these rich data semantic representations.Experiments on seven benchmark datasets show that our proposed model achieves competitive results compared to state-of-the-art methods.
基金financial support from the National Natural Science Foundation of China(Nos.52174092,51904290,52004272,52104125,42372328,and U23B2091)Natural Science Foundation of Jiangsu Province,China(Nos.BK20220157 and BK20240209)+3 种基金the Fundamental Research Funds for the Central Universities,China(No.2022YCPY0202)Xuzhou Science and Technology Project,China(Nos.KC21033 and KC22005)Yunlong Lake Laboratory of Deep Underground Science and Engineering Project,China(No.104023002)the Graduate Innovation Program of China University of Mining and Technology(No.2023WLTCRCZL052)。
文摘This study aims to investigate mechanical properties and failure mechanisms of layered rock with rough joint surfaces under direct shear loading.Cubic layered samples with dimensions of 100 mm×100 mm×100 mm were casted using rock-like materials,with anisotropic angle(α)and joint roughness coefficient(JRC)ranging from 15°to 75°and 2-20,respectively.The direct shear tests were conducted under the application of initial normal stress(σ_(n)) ranging from 1-4 MPa.The test results indicate significant differences in mechanical properties,acoustic emission(AE)responses,maximum principal strain fields,and ultimate failure modes of layered samples under different test conditions.The peak stress increases with the increasingαand achieves a maximum value atα=60°or 75°.As σ_(n) increases,the peak stress shows an increasing trend,with correlation coefficients R² ranging from 0.918 to 0.995 for the linear least squares fitting.As JRC increases from 2-4 to 18-20,the cohesion increases by 86.32%whenα=15°,while the cohesion decreases by 27.93%whenα=75°.The differences in roughness characteristics of shear failure surface induced byαresult in anisotropic post-peak AE responses,which is characterized by active AE signals whenαis small and quiet AE signals for a largeα.For a given JRC=6-8 andσ_(n)=1 MPa,asαincreases,the accumulative AE counts increase by 224.31%(αincreased from 15°to 60°),and then decrease by 14.68%(αincreased from 60°to 75°).The shear failure surface is formed along the weak interlayer whenα=15°and penetrates the layered matrix whenα=60°.Whenα=15°,as σ_(n) increases,the adjacent weak interlayer induces a change in the direction of tensile cracks propagation,resulting in a stepped pattern of cracks distribution.The increase in JRC intensifies roughness characteristics of shear failure surface for a smallα,however,it is not pronounced for a largeα.The findings will contribute to a better understanding of the mechanical responses and failure mechanisms of the layered rocks subjected to shear loads.
基金funded by the Cora Topolewski Cardiac Research Fund at the Children’s Hospital of Philadelphia(CHOP)the Pediatric Valve Center Frontier Program at CHOP+4 种基金the Additional Ventures Single Ventricle Research Fund Expansion Awardthe National Institutes of Health(USA)supported by the program(Nos.NHLBI T32 HL007915 and NIH R01 HL153166)supported by the program(No.NIH R01 HL153166)supported by the U.S.Department of Energy(No.DE-SC0022953)。
文摘Material identification is critical for understanding the relationship between mechanical properties and the associated mechanical functions.However,material identification is a challenging task,especially when the characteristic of the material is highly nonlinear in nature,as is common in biological tissue.In this work,we identify unknown material properties in continuum solid mechanics via physics-informed neural networks(PINNs).To improve the accuracy and efficiency of PINNs,we develop efficient strategies to nonuniformly sample observational data.We also investigate different approaches to enforce Dirichlet-type boundary conditions(BCs)as soft or hard constraints.Finally,we apply the proposed methods to a diverse set of time-dependent and time-independent solid mechanic examples that span linear elastic and hyperelastic material space.The estimated material parameters achieve relative errors of less than 1%.As such,this work is relevant to diverse applications,including optimizing structural integrity and developing novel materials.
基金supported by the Ministry of Water Resources Special Funds for Scientific Research on Public Causes(No.201301024)the Special Funds for Yellow River Institute of Hydraulic Research(No.HKY-JBYW-2016-09 and No.HKYJBYW-2016-29)
文摘The study of river dynamics requires knowledge of physical parameters, such as porosity, permeability, and wave propagation velocity, of river-bottom sediments. To do so, sediment properties are determined on mechanically sampled specimens and from subbottom profiling. However, mechanical sampling introduces disturbances that affect test results, with the exception of grain-size distribution. In this study, we perform inversion of acoustic data using the grain-size distribution of mechanically sampled specimens and the relation between porosity and permeability from the Kozeny-Carman equation as prior information. The wave reflection coefficient of the water-silt interface is extracted from the raw subbottom profile. Based on the effective density fluid model, we combine the Kozeny-Carman equation and the wave reflection coefficient. We use experimental data from two Yellow River reservoirs to obtain the wave velocity and density of multiple sections and their spatial variations, and find that the inversion and testing results are in good agreement.
基金supported by the Young Scientist Project of National Key Research and Development Program of China(2021YFC2900600)National Natural Science Foundation of China(52074166)Shandong Province(ZR2021YQ38).
文摘Soft rocks, such as coal, are afected by sedimentary efects, and the surrounding rock mass of underground coal mines is generally soft and rich in joints and cracks. A clear and deep understanding of the relationship between crack geometric parameters and rock mechanics properties in cracked rock is greatly important to the design of engineering rock mass struc‑tures. In this study, computed tomography (CT) scanning was used to extract the internal crack network of coal specimens. Based on the crack size and dominant crack number, the parameters of crack area, volume, length, width, and angle were statistically analyzed by diferent sampling thresholds. In addition, the Pearson correlation coefcients between the crack parameters and uniaxial compression rock mechanics properties (uniaxial compressive strength UCS, elasticity modulus E) were calculated to quantitatively analyze the impact of each parameter. Furthermore, a method based on Pearson coefcients was used to grade the correlation between crack geometric parameters and rock mechanical properties to determine threshold values. The results indicated that the UCS and E of the specimens changed with the varied internal crack structures of the specimens, the crack parameters of area, volume, length and width all showed negative correlations with UCS and E, and the dominant crack played an important role both in weakening strength and stifness. The crack parameters of the angle are all positively correlated with the UCS and E. More crack statistics can signifcantly improve the correlation between the parameters of the crack angle and the rock mechanics properties, and the statistics of the geometric parameters of at least 16 cracks or the area larger than 5 mm2 are suggested for the analysis of complex cracked rock masses or physical reproduction using 3D printing. The results are validated and further analyzed with triaxial tests. The fndings of this study have important reference value for future research regarding the accurate and efcient selection of a few cracks with a signifcant infuence on the rock mechanical properties of surrounding rock mass structures in coal engineering.
基金Supported by Research Foundation of CLEP of China (Grant No.TY3Q20110003)。
文摘The encapsulation of lunar samples is a core research area in the third phase of the Chinese Lunar Exploration Program.The seal assembly,opening and closing mechanism(OCM),and locking mechanism are the core components of the encapsulation device of the lunar samples,and the requirements of a tight seal,lightweight,and low power make the design of these core components difficult.In this study,a combined sealing assembly,OCM,and locking mechanism were investigated for the device.The sealing architecture consists of rubber and an Ag-In alloy,and a theory was built to analyze the seal.Experiments of the electroplate Au coating on the knife-edge revealed that the hermetic seal can be significantly improved.The driving principle for coaxial double-helical pairs was investigated and used to design the OCM.Moreover,a locking mechanism was created using an electric initiating explosive device with orifice damping.By optimizing the design,the output parameters were adjusted to meet the requirements of the lunar explorer.The experimental results showed that the helium leak rate of the test pieces were not more than 5×10^(-11) Pa·m^(3)·s^(-1),the minimum power of the OCM was 0.3 W,and the total weight of the principle prototype was 2.9 kg.The explosive driven locking mechanism has low impact.This investigation solved the difficulties in achieving tight seal,light weight,and low power for the lunar explorer,and the results can also be used to explore other extraterrestrial objects in the future.
基金the National Natural Science Foundation of China(61563032,61963025)The Open Foundation of the Key Laboratory of Gansu Advanced Control for Industrial Processes(2019KX01)The Project of Industrial support and guidance of Colleges and Universities in Gansu Province(2019C05).
文摘In this work,an adaptive sampling control strategy for distributed predictive control is proposed.According to the proposed method,the sampling rate of each subsystem of the accused object is determined based on the periodic detection of its dynamic behavior and calculations made using a correlation function.Then,the optimal sampling interval within the period is obtained and sent to the corresponding sub-prediction controller,and the sampling interval of the controller is changed accordingly before the next sampling period begins.In the next control period,the adaptive sampling mechanism recalculates the sampling rate of each subsystem’s measurable output variable according to both the abovementioned method and the change in the dynamic behavior of the entire system,and this process is repeated.Such an adaptive sampling interval selection based on an autocorrelation function that measures dynamic behavior can dynamically optimize the selection of sampling rate according to the real-time change in the dynamic behavior of the controlled object.It can also accurately capture dynamic changes,meaning that each sub-prediction controller can more accurately calculate the optimal control quantity at the next moment,significantly improving the performance of distributed model predictive control(DMPC).A comparison demonstrates that the proposed adaptive sampling DMPC algorithm has better tracking performance than the traditional DMPC algorithm.
基金the China National Key Research and Development Program(Grant No.2016YFC0802904)National Natural Science Foundation of China(Grant No.61671470)62nd batch of funded projects of China Postdoctoral Science Foundation(Grant No.2017M623423)to provide fund for conducting experiments。
文摘Traditional object detectors based on deep learning rely on plenty of labeled samples,which are expensive to obtain.Few-shot object detection(FSOD)attempts to solve this problem,learning detection objects from a few labeled samples,but the performance is often unsatisfactory due to the scarcity of samples.We believe that the main reasons that restrict the performance of few-shot detectors are:(1)the positive samples is scarce,and(2)the quality of positive samples is low.Therefore,we put forward a novel few-shot object detector based on YOLOv4,starting from both improving the quantity and quality of positive samples.First,we design a hybrid multivariate positive sample augmentation(HMPSA)module to amplify the quantity of positive samples and increase positive sample diversity while suppressing negative samples.Then,we design a selective non-local fusion attention(SNFA)module to help the detector better learn the target features and improve the feature quality of positive samples.Finally,we optimize the loss function to make it more suitable for the task of FSOD.Experimental results on PASCAL VOC and MS COCO demonstrate that our designed few-shot object detector has competitive performance with other state-of-the-art detectors.
文摘大数据时代,越来越多的数据以数据流的形式产生,由于其具有快速、无限、不稳定及动态变化等特性,使得概念漂移成为流数据挖掘中一个重要但困难的问题.目前多数概念漂移处理方法存在信息提取能力有限且未充分考虑流数据的时序特性等问题.针对这些问题,提出一种基于混合特征提取的流数据概念漂移处理方法(concept drift processing method of streaming data based on mixed feature extraction,MFECD).该方法首先采用不同尺度的卷积核对数据进行建模以构建拼接特征,采用门控机制将浅层输入和拼接特征融合,作为不同网络层次输入进行自适应集成,以获得能够兼顾细节信息和语义信息的数据特性.在此基础上,采用注意力机制和相似度计算评估流数据不同时刻的重要性,以增强数据流关键位点的时序特性.实验结果表明,该方法能有效提取流数据中包含的复杂数据特征和时序特征,提高了数据流中概念漂移的处理能力.