期刊文献+
共找到6,019篇文章
< 1 2 250 >
每页显示 20 50 100
Ab initio nonadiabatic molecular dynamics study on spin–orbit coupling induced spin dynamics in ferromagnetic metals
1
作者 朱万松 郑镇法 +1 位作者 郑奇靖 赵瑾 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期156-163,共8页
Understanding the photoexcitation induced spin dynamics in ferromagnetic metals is important for the design of photo-controlled ultrafast spintronic device.In this work,by the ab initio nonadiabatic molecular dynamics... Understanding the photoexcitation induced spin dynamics in ferromagnetic metals is important for the design of photo-controlled ultrafast spintronic device.In this work,by the ab initio nonadiabatic molecular dynamics simulation,we have studied the spin dynamics induced by spin–orbit coupling(SOC)in Co and Fe using both spin-diabatic and spin-adiabatic representations.In Co system,it is found that the Fermi surface(E_(F))is predominantly contributed by the spin-minority states.The SOC induced spin flip will occur for the photo-excited spin-majority electrons as they relax to the E_(F),and the spin-minority electrons tend to relax to the EFwith the same spin through the electron–phonon coupling(EPC).The reduction of spin-majority electrons and the increase of spin-minority electrons lead to demagnetization of Co within100 fs.By contrast,in Fe system,the E_(F) is dominated by the spin-majority states.In this case,the SOC induced spin flip occurs for the photo-excited spin-minority electrons,which leads to a magnetization enhancement.If we move the E_(F) of Fe to higher energy by 0.6eV,the E_(F) will be contributed by the spin-minority states and the demagnetization will be observed again.This work provides a new perspective for understanding the SOC induced spin dynamics mechanism in magnetic metal systems. 展开更多
关键词 nonadiabatic molecular dynamics spin dynamics spin–orbit coupling ferromagnetic metal
下载PDF
Dynamic impact properties of deep sandstone under thermal-hydraulicmechanical coupling loads
2
作者 CAO Chunhui DING Haonan ZOU Baoping 《Journal of Mountain Science》 SCIE CSCD 2024年第6期2113-2129,共17页
The deep rock mass within coal mines situated in a challenging environment are characterized by high ground stress,high geotemperature,high osmotic water pressure,and dynamic disturbances from mechanical excavation.To... The deep rock mass within coal mines situated in a challenging environment are characterized by high ground stress,high geotemperature,high osmotic water pressure,and dynamic disturbances from mechanical excavation.To investigate the impact of this complex mechanical environment on the dynamic characteristics of roof sandstone in self-formed roadways without coal pillars,standard specimens of deep sandstone from the 2611 upper tunnel working face of the Yongmei Company within the Henan Coal Chemical Industry Group in Henan,China were prepared,and an orthogonal test was designed.Using a self-developed geotechnical dynamic impact mechanics test system,triaxial dynamic impact tests under thermal-hydraulicmechanical coupling conditions were conducted on deep sandstone.The results indicate that under high confining pressure,deep sandstone exhibits pronounced brittle failure at low temperatures,with peak strength gradually decreasing as temperature and osmotic water pressure increase.Conversely,under low confining pressure and low temperature,the brittleness of deep sandstone weakens gradually,while ductility increases.Moreover,sandstone demonstrates higher peak strength at low temperatures under high axial pressure conditions,lower peak strength at high temperatures,and greater strain under low axial pressure and high osmotic water pressure.Increases in impact air pressure and osmotic water pressure have proportionally greater effects on peak stress and peak strain.Approximately 50%of the input strain energy is utilized as effective energy driving the sandstone fracture process.Polar analysis identifies the optimal combination of factors affecting the peak stress and peak strain of sandstone.Under the coupling effect,intergranular and transgranular fractures occur within the sandstone.SEM images illustrate that the damage forms range from minor damage with multiple fissures to extensive fractures and severe fragmentation.This study elucidates the varied dynamic impact mechanical properties of deep sandstones under thermal-hydraulic-mechanical coupling,along with multifactor analysis methods and their optimal factor combinations. 展开更多
关键词 Deep sandstone Thermal-hydraulicmechanical coupling dynamic impact STRESS-STRAIN Failure Modes Polar analysis
下载PDF
Seismic performance evaluation of hybrid coupled shear wall system with shear and flexural fuse-type steel coupling beams
3
作者 Zahra Ramezandoust Abbas Tajaddini Panam Zarfam 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期691-712,共22页
Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically... Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically evaluate the seismic behavior of flexural and shear fuse beams situated in short-,medium-and high-rise RC buildings that have HCSWs.Three building groups hypothetically located in a high seismic hazard zone were studied.A series of 2D nonlinear time history analyses was accomplished in OpenSees,using the ground motion records scaled at the design basis earthquake level.It was found that the effectiveness of fuses in HCSWs depends on various factors such as size and scale of the building,allowable rotation value,inter-story drift ratio,residual drift quantity,energy dissipation value of the fuses,etc.The results show that shear fuses better meet the requirements of rotations and drifts.In contrast,flexural fuses dissipate more energy,but their sectional stiffness should increase to meet other requirements.It was concluded that adoption of proper fuses depends on the overall scale of the building and on how associated factors are considered. 展开更多
关键词 hybrid coupled shear wall steel fuse coupling beam shear and flexural fuse nonlinear dynamic analysis seismic performance
下载PDF
Uncertainty quantification of mechanism motion based on coupled mechanism—motor dynamic model for ammunition delivery system
4
作者 Jinsong Tang Linfang Qian +3 位作者 Longmiao Chen Guangsong Chen Mingming Wang Guangzu Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期125-133,共9页
In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to pro... In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to propose a novel mechanism-motor coupling dynamic modeling method,in which the relationship between mechanism motion and motor rotation is established according to the geometric coordination of the system.The advantages of this include establishing intuitive coupling between the mechanism and motor,facilitating the discussion for the influence of both mechanical and electrical parameters on the mechanism,and enabling dynamic simulation with controller to take the randomness of the electric load into account.Dynamic simulation considering feedback control of ammunition delivery system is carried out,and the feasibility of the model is verified experimentally.Based on probability density evolution theory,we comprehensively discuss the effects of system parameters on mechanism motion from the perspective of uncertainty quantization.Our work can not only provide guidance for engineering design of ammunition delivery mechanism,but also provide theoretical support for modeling and uncertainty quantification research of mechatronics system. 展开更多
关键词 Ammunition delivery system Electromechanical coupling dynamics Uncertainty quantification Generalized probability density evolution
下载PDF
Multi-Body Dynamics Modeling of Heavy Goods Vehicle-Rail Interaction
5
作者 Lili Liu Jianhua Liu Jihong Zuo 《Open Journal of Applied Sciences》 2024年第7期1715-1722,共8页
Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonablenes... Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonableness of the line-coupled dynamics model is verified by using the maximum residual acceleration, the nonlinear critical speed of the wagon. The experimental results show that the established vehicle line coupling dynamics model meets the requirements of vehicle line coupling dynamics modeling. 展开更多
关键词 Vehicle-Rail coupling dynamic Modeling Wheel-Rail Interaction Forces
下载PDF
Dynamic Response of Sea-Crossing Rail-cum-Road Cable-Stayed Bridge Influenced by Random Wind–Wave–Undercurrent Coupling
6
作者 BIAN Chen-jie DU Li-ming +2 位作者 WANG Ga-ping LI Xin LI Wei-ran 《China Ocean Engineering》 SCIE EI CSCD 2023年第1期85-100,共16页
Sea-crossing bridges are affected by random wind–wave–undercurrent coupling loads, due to the complex marine environment. The dynamic response of long-span Rail-cum-Road cable-stayed bridges is particularly severe u... Sea-crossing bridges are affected by random wind–wave–undercurrent coupling loads, due to the complex marine environment. The dynamic response of long-span Rail-cum-Road cable-stayed bridges is particularly severe under their influence, potentially leading to safety problems. In this paper, a fluid–structure separation solution method is implemented using Ansys–Midas co-simulation, in order to solve the above issues effectively while using less computational resources. The feasibility of the method is verified by comparing the tower top displacement response with relevant experimental data. From time and frequency domain perspectives, the displacement and acceleration responses of the sea-crossing Rail-cum-Road cable-stayed bridge influenced by wave-only, wind–wave, and wind–wave–undercurrent coupling are comparatively studied. The results indicate that the displacement and acceleration of the front bearing platform top are more significant than those of the rear bearing platform. The dominant frequency under wind–wave–undercurrent coupling is close to the natural vibration frequencies of several bridge modes,such that wind–wave–undercurrent coupling is more likely to cause a resonance effect in the bridge. Compared with the wave-only and wind–wave coupling, wind–wave–undercurrent coupling can excite bridges to produce larger displacement and acceleration responses: at the middle of the main girder span, compared with the wave-only case, the maximum displacement in the transverse bridge direction increases by 23.58% and 46.95% in the wind–wave and wind–wave–undercurrent coupling cases, respectively;at the tower top, the variation in the amplitude of the displacement and acceleration responses of wind–wave and wind–wave–undercurrent coupling are larger than those in the wave-only case, where the acceleration change amplitude of the tower top is from-0.93 to 0.86 m/s^(2) in the waveonly case, from-2.2 to 2.1 m/s^(2) under wind–wave coupling effect, and from-2.6 to 2.65 m/s^(2) under wind–wave–undercurrent coupling effect, indicating that the tower top is mainly affected by wind loads, but wave and undercurrent loads cannot be neglected. 展开更多
关键词 random wind WAVE undercurrent coupling effect Rail-cum-Road cable-stayed bridge dynamic response
下载PDF
Coupled Dynamics and Integrated Control for Position and Attitude Motions of Spacecraft:A Survey
7
作者 Feng Zhang Guangren Duan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第12期2187-2208,共22页
Inspired by the integrated guidance and control design for endo-atmospheric aircraft,the integrated position and attitude control of spacecraft has attracted increasing attention and gradually induced a wide variety o... Inspired by the integrated guidance and control design for endo-atmospheric aircraft,the integrated position and attitude control of spacecraft has attracted increasing attention and gradually induced a wide variety of study results in last over two decades,fully incorporating control requirements and actuator characteristics of space missions.This paper presents a novel and comprehensive survey to the coupled position and attitude motions of spacecraft from the perspective of dynamics and control.To this end,a systematic analysis is firstly conducted in details to show the position and attitude mutual couplings of spacecraft.Particularly,in terms of the time discrepancy between spacecraft position and attitude motions,space missions can be categorized into two types:space proximity operation and space orbital maneuver.Based on this classification,the studies on the coupled dynamic modeling and the integrated control design for position and attitude motions of spacecraft are sequentially summarized and analyzed.On the one hand,various coupled position and dynamic formulations of spacecraft based on various mathematical tools are reviewed and compared from five aspects,including mission applicability,modeling simplicity,physical clearance,information matching and expansibility.On the other hand,the development of the integrated position and attitude control of spacecraft is analyzed for two space missions,and especially,five distinctive development trends are captured for space operation missions.Finally,insightful prospects on future development of the integrated position and attitude control technology of spacecraft are proposed,pointing out current primary technical issues and possible feasible solutions. 展开更多
关键词 coupled position and attitude dynamic modeling integrated position and attitude control position and attitude coupling analysis SPACECRAFT space missions
下载PDF
Receptance Coupling for Tool Point Dynamics Prediction on Machine Tools 被引量:9
8
作者 ZHANG Jun SCHMITZ Tony +1 位作者 ZHAO Wanhua LU Bingheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第3期340-345,共6页
Chatter has been a primary obstacle to the successful implementation of high speed machining.The frequency response function(FRF) of the tool point is crucial for identification of chatter free cutting conditions.In... Chatter has been a primary obstacle to the successful implementation of high speed machining.The frequency response function(FRF) of the tool point is crucial for identification of chatter free cutting conditions.In order to quickly acquire the FRF of the different components combinations of machine tool,the assembly of machine tool was always decomposed into several parts,where the fluted portion of tool,however,was always treated as a uniform beam,and the associated discrepancy was ignored.This paper presents a new method to predict the dynamic response of the machine-spindle-holder-tool assembly using the receptance coupling substructure analysis technique,where the assembly is divided into three parts:machine-spindle,holder and tool shank,and tool's fluted portion.Impact testing is used to measure the receptance of machine-spindle,the Timoshenko beam model is employed to analyze the dynamics of holder and tool shank,and the finite element method(FEM) is used to calculate the receptance of the tool's fluted portion.The approximation of the fluted portion cross section using an equivalent diameter is also addressed.All the individual receptances are coupled by using substructure method.The predicted assembly receptance is experimentally verified for three different tool overhang lengths.The results also show that the equivalent diameter beam model reaches an acceptable accuracy.The proposed approach is helpful to predict the tool point dynamics rapidly in industry. 展开更多
关键词 receptance coupling dynamics endmill chatter
下载PDF
Evaluation on Stability of Stope Structure Based on Nonlinear Dynamics of Coupling Artificial Neural Network 被引量:7
9
作者 Meifeng Cai Xingping Lai 《Journal of University of Science and Technology Beijing》 CSCD 2002年第1期1-4,共4页
关键词 coupling neural network nonlinear dynamics structural stability stope parameters
下载PDF
Dynamics of electromagnetic slip coupling for hydraulic power steering application and its energy-saving characteristics 被引量:2
10
作者 唐斌 江浩斌 +2 位作者 徐哲 耿国庆 徐兴 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1994-2000,共7页
To improve high-speed road feel and enhance energetic efficiency of hydraulic power steering(HPS) system in heavy-duty vehicles, an electromagnetic slip coupling(ESC) was applied to the steering system, which regulate... To improve high-speed road feel and enhance energetic efficiency of hydraulic power steering(HPS) system in heavy-duty vehicles, an electromagnetic slip coupling(ESC) was applied to the steering system, which regulated discharge flow of steering pump to realize variable assist characteristic as well as uniquely transfer on-demand power from engine to steering pump. The model of ESC was established and the dynamic characteristics of ESC were presented by the way of simulation and experiment. Upon the layout of the assist characteristics, output torque of ESC was derived. Based on the ESC model, the output torque characteristics of ESC were simulated under steering situation and straight driving situation, respectively. The consistency of simulated ESC output torque and the one deduced from assist characteristics verifies the correctness of the ESC dynamic model. To illustrate energy saving characteristics of ESC-HPS, energy consumption comparison of ESC-HPS and conventional HPS was carried out qualitatively and quantitatively. It follows that the energy consumption of ESC-HPS decreases by 50% compared with that of HPS. 展开更多
关键词 heavy-duty vehicle hydraulic power steering system electromagnetic slip coupling dynamics energy saving
下载PDF
Lattice dynamics study of low energy guest-host coupling in clathrate hydrate 被引量:1
11
作者 杨岳海 董顺乐 王琳 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第1期270-273,共4页
Our lattice dynamics simulation of Xe-hydrate with four-site TIP4P oxygen-shell model can accurately reproduce each peak position in the inelastic incoherent neutron scattering spectrum at the acoustic band (below 15... Our lattice dynamics simulation of Xe-hydrate with four-site TIP4P oxygen-shell model can accurately reproduce each peak position in the inelastic incoherent neutron scattering spectrum at the acoustic band (below 15 meV) and yield correct relative intensity. Based on the results, the uncertain profile at ~6 meV is assigned to anharmonic guest modes coupled strongly to small cages. Blue shift is proposed in phonon dispersion sheet in the case of anticrossing and found to be an evident signal for guest-host coupling that explains the anomalous thermal conductivity of clathrate hydrate. 展开更多
关键词 lattice dynamics clathrate hydrate guest-host coupling anticrossing
下载PDF
Coupling numerical simulation with remotely sensed information for the study of frozen soil dynamics 被引量:2
12
作者 HuiRan Gao WanChang Zhang 《Research in Cold and Arid Regions》 CSCD 2020年第6期404-417,共14页
The acquisition of spatial-temporal information of frozen soil is fundamental for the study of frozen soil dynamics and its feedback to climate change in cold regions.With advancement of remote sensing and better unde... The acquisition of spatial-temporal information of frozen soil is fundamental for the study of frozen soil dynamics and its feedback to climate change in cold regions.With advancement of remote sensing and better understanding of frozen soil dynamics,discrimination of freeze and thaw status of surface soil based on passive microwave remote sensing and numerical simulation of frozen soil processes under water and heat transfer principles provides valuable means for regional and global frozen soil dynamic monitoring and systematic spatial-temporal responses to global change.However,as an important data source of frozen soil processes,remotely sensed information has not yet been fully utilized in the numerical simulation of frozen soil processes.Although great progress has been made in remote sensing and frozen soil physics,yet few frozen soil research has been done on the application of remotely sensed information in association with the numerical model for frozen soil process studies.In the present study,a distributed numerical model for frozen soil dynamic studies based on coupled water-heat transferring theory in association with remotely sensed frozen soil datasets was developed.In order to reduce the uncertainty of the simulation,the remotely sensed frozen soil information was used to monitor and modify relevant parameters in the process of model simulation.The remotely sensed information and numerically simulated spatial-temporal frozen soil processes were validated by in-situ field observations in cold regions near the town of Naqu on the East-Central Tibetan Plateau.The results suggest that the overall accuracy of the algorithm for discriminating freeze and thaw status of surface soil based on passive microwave remote sensing was more than 95%.These results provided an accurate initial freeze and thaw status of surface soil for coupling and calibrating the numerical model of this study.The numerically simulated frozen soil processes demonstrated good performance of the distributed numerical model based on the coupled water-heat transferring theory.The relatively larger uncertainties of the numerical model were found in alternating periods between freezing and thawing of surface soil.The average accuracy increased by about 5%after integrating remotely sensed information on the surface soil.The simulation accuracy was significantly improved,especially in transition periods between freezing and thawing of the surface soil. 展开更多
关键词 frozen soil water-heat coupled model passive microwave remote sensing coupling frozen soil dynamics
下载PDF
Complete geometric nonlinear formulation for rigid-flexible coupling dynamics 被引量:3
13
作者 刘铸永 洪嘉振 刘锦阳 《Journal of Central South University》 SCIE EI CAS 2009年第1期119-124,共6页
A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms relate... A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms related to coupling deformation were included in dynamic equations. Simulation examples of the flexible beam with prescribed rotation and free rotation were investigated. Numerical results show that the use of the first-order approximation coupling (FOAC) model may lead to a significant error when the flexible beam experiences large deformation or large deformation velocity. However, the correct solutions can always be obtained by using the present complete model. The difference in essence between this model and the FOAC model is revealed. These coupling high-order terms, which are ignored in FOAC model, have a remarkable effect on the dynamic behavior of the flexible body. Therefore, these terms should be included for the rigid-flexible dynamic modeling and analysis of flexible body undergoing motions with high speed. 展开更多
关键词 动力学方程 自动化系统 机器人 非线性公式 柔性体
下载PDF
Coupling Analysis of Tribology and Dynamics in Rolling Interface
14
作者 段吉安 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第B10期72-75,共4页
The metal plastic flow, tribology performance and work roll vibration on the rolling interface were analyzed. Considering the effect of work roll vibration on the tribology behavior of rolling interface, the damping o... The metal plastic flow, tribology performance and work roll vibration on the rolling interface were analyzed. Considering the effect of work roll vibration on the tribology behavior of rolling interface, the damping of rolling interface was researched. It is found that the rolling interface, where the partial hydraulic lubricating film and dry friction area coexist, is of negative damping coefficient. The negative damping results from the dynamic variation of the thickness of lubricating film in the rolling interface, and is caused by the special coupling between dynamics and tribology of the rolling interface. 展开更多
关键词 rolling interface TRIBOLOGY dynamics coupling
下载PDF
Monolithic Coupling of the Pressure and Rigid Body Motion Equations in Computational Marine Hydrodynamics
15
作者 Hrvoje Jasak Inno Gatin Vuko Vukcevic 《Journal of Marine Science and Application》 CSCD 2017年第4期375-381,共7页
In Fluid Structure Interaction(FSI) problems encountered in marine hydrodynamics, the pressure field and the velocity of the rigid body are tightly coupled. This coupling is traditionally resolved in a partitioned man... In Fluid Structure Interaction(FSI) problems encountered in marine hydrodynamics, the pressure field and the velocity of the rigid body are tightly coupled. This coupling is traditionally resolved in a partitioned manner by solving the rigid body motion equations once per nonlinear correction loop, updating the position of the body and solving the fluid flow equations in the new configuration. The partitioned approach requires a large number of nonlinear iteration loops per time–step. In order to enhance the coupling, a monolithic approach is proposed in Finite Volume(FV) framework,where the pressure equation and the rigid body motion equations are solved in a single linear system. The coupling is resolved by solving the rigid body motion equations once per linear solver iteration of the pressure equation, where updated pressure field is used to calculate new forces acting on the body, and by introducing the updated rigid body boundary velocity in to the pressure equation. In this paper the monolithic coupling is validated on a simple 2D heave decay case. Additionally, the method is compared to the traditional partitioned approach(i.e. "strongly coupled" approach) in terms of computational efficiency and accuracy. The comparison is performed on a seakeeping case in regular head waves, and it shows that the monolithic approach achieves similar accuracy with fewer nonlinear correctors per time–step. Hence, significant savings in computational time can be achieved while retaining the same level of accuracy. 展开更多
关键词 MONOLITHIC coupling pressure equation rigid body motion COMPUTATIONAL fluid dynamics MARINE HYDROdynamics SEAKEEPING
下载PDF
Population dynamics of Acartia pacifica (Copepoda:Calanoida):the importance of benthic-pelagic coupling
16
作者 JIANG Xiaodong WANG Guizhong LI Shaojing 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2006年第6期88-98,共11页
The seasonal occurrence of Acartia pacifica ( Copepoda: Calanoida) and their resting eggs in the sediment of Xiamen Bay were documented between October 2002 and September 2003. The numher of viable eggs in the sedi... The seasonal occurrence of Acartia pacifica ( Copepoda: Calanoida) and their resting eggs in the sediment of Xiamen Bay were documented between October 2002 and September 2003. The numher of viable eggs in the sediment increased from January to May with the increase in the numher of planktonic females. When the population ofA. pacifica disappeared from the water cohinm, the number of eggs in the sediment began to decrease and reached a low value due to lack of input. The peak of nauplii abundance occurred when the hatching potential of eggs from the sediment was high under the natural environment from February to June. The hatching of resting eggs of A. pacifica was essentially temperature-dependent after suspension, while photoperied regimes had no significant effect on the hatching. The mean density of subitaneeus eggs was 1. 122 0 g/cm^3 with a standard deviation (SD) of 0. 000 2 g/cm^3. The mean density of diapause eggs was 1. 151 2 g/cm^3 with a SD of 0.000 1 g/cm^3. The sinking rates of subitaneons eggs ranged from 19.55 to 26.17 m/d, while those of diapause eggs ranged from 30.29 to 31.28 m/d. The comparison of the egg deposition time and egg hatching time suggested that in most cases virtually all subitaneous eggs of A. pacifica would settle to the bottom before their hatching even though the eggs have high potential to hatch. The evidence was provided that the seasonal dynamics of A. pacifica is accompanied by benthic-pelagic coupling. 展开更多
关键词 population dynamics benthic - pelagic coupling Acartia pacifica
下载PDF
Entanglement Dynamics of Two Qubits Coupled Independently to Cavities in the Ultrastrong Coupling Regime:Analytical Results
17
作者 朱维婷 任清褒 +1 位作者 段立伟 陈庆虎 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第5期5-8,共4页
Dynamics of quantum entanglement of two qubits in two identical quantum Rabi models is studied analytically in the framework of corrections to the rotating-wave approximations. A closed-form expression for the entangl... Dynamics of quantum entanglement of two qubits in two identical quantum Rabi models is studied analytically in the framework of corrections to the rotating-wave approximations. A closed-form expression for the entanglement dynamics initiated from the well-known Bell states is derived, which is very close to the numerical exact results up to the ultrastrong coupling regime. It is found that the vanishing entanglement can be purely induced by the counter-rotating terms, and can be enhanced with the atom-cavity coupling. 展开更多
关键词 RWA on it in Entanglement dynamics of Two Qubits coupled Independently to Cavities in the Ultrastrong coupling Regime:Analytical Results of for been is that Bell
下载PDF
Carrier Dynamics Determined by Carrier-Phonon Coupling in InGaN/GaN Multiple Quantum Well Blue Light Emitting Diodes
18
作者 曹盛 吴小明 +1 位作者 刘军林 江风益 《Chinese Physics Letters》 SCIE CAS CSCD 2019年第2期92-95,共4页
Phonon sidebands in the electrolumiescence(EL) spectra of InGaN/GaN multiple quantum well blue light emitting diodes are investigated. S-shaped injection current dependence of the energy spacing(ES) between the zero-p... Phonon sidebands in the electrolumiescence(EL) spectra of InGaN/GaN multiple quantum well blue light emitting diodes are investigated. S-shaped injection current dependence of the energy spacing(ES) between the zero-phonon and first-order phonon-assisted luminescence lines is observed in a temperature range of 100–150 K.The S-shape is suppressed with increasing temperature from 100 to 150 K, and vanishes at temperature above200 K. The S-shaped injection dependence of ES at low temperatures could be explained by the three stages of carrier dynamics related to localization states:(i) carrier relaxation from shallow into deep localization states,(ii) band filling of shallow and deep localization states, and(iii) carrier overflow from deep to shallow localization states and to higher energy states. The three stages show strong temperature dependence. It is proposed that the fast change of the carrier lifetime with temperature is responsible for the suppression of S-shaped feature.The proposed mechanisms reveal carrier recombination dynamics in the EL of InGaN/GaN MQWs at various injection current densities and temperatures. 展开更多
关键词 CARRIER dynamics Determined Carrier-Phonon coupling INGAN/GAN Multiple Quantum Well BLUE Light EMITTING DIODES
下载PDF
The dynamic coupling model and its application of urbanization and eco-environment in Hexi Corridor 被引量:8
19
作者 QIAO Biao FANG Chuanglin 《Journal of Geographical Sciences》 SCIE CSCD 2005年第4期491-499,共9页
This paper, taking Hexi Corridor as an example, analyzes the altemating intimidation and the dynamic evolving relation between urbanization and eco-environment in arid area of West China. We argue that the harmonious ... This paper, taking Hexi Corridor as an example, analyzes the altemating intimidation and the dynamic evolving relation between urbanization and eco-environment in arid area of West China. We argue that the harmonious development system of the urbanization and eco-environment would go through four phases: rudimentary symbiotic phase, harmonious developmental phase, utmost increasing phase and spiral type rising phase. Throughout the four phases, the elements of the system would influence each other, coerce each other, and complete the spiral type rising process from low-grade symbiosis to high-grade harmony together. The study on Hexi Corridor shows that the urbanization level in Hexi Corridor has increased gradually from 1985 to 2003 accompanied with the fluctuations of eco-environment state. The response of eco-environment to urbanization has been evident, but lagged behind the urbanization course. At present, the harmonious development system in Hexi Corridor was in its harmonious developmental phase. However, the coupling degree has increased quickly and approached 90 yet, which is signaling that the system is about to enter the utmost increasing phase, and the ecological crisis will enter the latent period. We have found that the coupling degree can well reflect the interactive coercing and dynamic evolving situation between urbanization and eco-environment in Hexi Corridor. From the temporal change of the coupling degree, it can be concluded that urbanization sometimes needs to pay a certain cost for the damage of the eco-environment in its initial stages, but as the urbanization continues, the state of the eco-environment would be meliorated. 展开更多
关键词 Hexi Corridor URBANIZATION eeo-environment harmonious development dynamic coupling model
下载PDF
Dynamic Coupled Analysis of the Floating Platform Using the Asynchronous Coupling Algorithm 被引量:5
20
作者 Shan Ma Wenyang Duan 《Journal of Marine Science and Application》 2014年第1期85-91,共7页
This paper discusses the numerical modeling of the dynamic coupled analysis of the floating platform and mooring/risers using the asynchronous coupling algorithm with the purpose to improve the computational efficienc... This paper discusses the numerical modeling of the dynamic coupled analysis of the floating platform and mooring/risers using the asynchronous coupling algorithm with the purpose to improve the computational efficiency when multiple lines are connected to the platform. The numerical model of the platform motion simulation in wave is presented. Additionally, how the asynchronous coupling algorithm is implemented during the dynamic coupling analysis is introduced. Through a comparison of the numerical results of our developed model with commercial software for a SPAR platform, the developed numerical model is checked and validated. 展开更多
关键词 floating PLATFORM PLATFORM MOTIONS dynamIC coupledanalysis ASYNCHRONOUS coupling algorithm MOORING line TENSIONS SPAR PLATFORM
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部