In order to increase the availability of the part-time idle bus rapid transit lane(BRT-lane),a time division multiplexing(TDM) method to share BRT-lane with the vehicles besides BRT buses is proposed based on vehicle-...In order to increase the availability of the part-time idle bus rapid transit lane(BRT-lane),a time division multiplexing(TDM) method to share BRT-lane with the vehicles besides BRT buses is proposed based on vehicle-road collaboration. The TDM control strategy is established under the circumstance of vehicle-infrastructure integration(VII). The algorithm is given to forecast the segmented BRT travel time. According to the real time traffic information,a comprehensive model is given to estimate the vehicles' lane-changing time from/to the BRTlane to/from its neighbor lane and determine the timing sequence for vehicles collaboration. Finally,the experiment demonstrates that the predicted value of the travel time and lane-changing time is much close to the true value. The control strategy of the vehicles collaboration could promise the non-BRT vehicles to share BRT-lane without disturbing BRT's priority.展开更多
Both the seat and cab system of truck play a vital role in ride comfort.The damping matching methods of the two systems are studied separately at present.However,the driver,seat,and cab system are one inseparable whol...Both the seat and cab system of truck play a vital role in ride comfort.The damping matching methods of the two systems are studied separately at present.However,the driver,seat,and cab system are one inseparable whole.In order to further improve ride comfort,the seat suspension is regarded as the fifth suspension of the cab,a new idea of "Five-suspensions" is proposed.Based on this idea,a 4 degree-of-freedom driver-seat-cab coupled system model is presented.Using the tested cab suspensions excitations as inputs and seat acceleration response as compared output,the simulation model is built.Taking optimal ride comfort as target,a new method of damping collaborative optimization for Five-suspensions is proposed.With a practical example of seat and cab system,the damping parameters are optimized and validated by simulation and bench test.The results show the seat vertical frequency-weighted RMS acceleration values tested for the un-optimized and optimized Five-suspensions are 0.50 m/s~2 and 0.39 m/s~2,respectively,with a decrease by 22.0%,which proves the model and method proposed are correct and reliable.The idea of "Five-suspensions" and the method proposed provide a reference for achieving global optimal damping matching of seat suspension and cab suspensions.展开更多
Existing solutions for collaborative trajectory planning using multiple UAVs suffer from issues such as low accuracy,instability,and slow convergence.To address the aforementioned issues,this paper introduces a new me...Existing solutions for collaborative trajectory planning using multiple UAVs suffer from issues such as low accuracy,instability,and slow convergence.To address the aforementioned issues,this paper introduces a new method for multiple unmanned aerial vehicle(UAV)3D terrain cooperative trajectory planning based on the cuck0o search golden jackal optimization(CS-GJO)algorithm.A model for single UAV trajectory planning and a model for multi-UAV collaborative trajectory planning have been developed,and the problem of solving the models is restructured into an optimization problem.Building upon the original golden jackal optimization,the use of tent chaotic mapping aids in the generation of the golden jackal's inital population,thereby promoting population diversity.Subsequently,the position update strategy of the cuckoo search algorithm is combined for purpose of update the position information of individual golden jackals,effectively preventing the algorithm from getting stuck in local minima.Finally,the corresponding nonlinear control parameter were developed.The new parameters expedite the decrease in the convergence factor during the pre-exploration stage,resulting in an improved overall search speed of the algorithm.Moreover,they attenuate the decrease in the convergence factor during the post-exploration stage,thereby enhancing the algorithm's global search.The experimental results demonstrate that the CS-GJO algorithm efficiently and accurately accomplishes multi-UAV cooperative trajectory planning in a 3D environment.Compared with other comparative algorithms,the CS-GJO algorithm also has better stability,higher optimization accuracy,and faster convergence speed.展开更多
基金supported by National Natural Science Foundation of China(No.61174176)Zhejiang Planning Project of Science and Technology(No.2013C33086)
文摘In order to increase the availability of the part-time idle bus rapid transit lane(BRT-lane),a time division multiplexing(TDM) method to share BRT-lane with the vehicles besides BRT buses is proposed based on vehicle-road collaboration. The TDM control strategy is established under the circumstance of vehicle-infrastructure integration(VII). The algorithm is given to forecast the segmented BRT travel time. According to the real time traffic information,a comprehensive model is given to estimate the vehicles' lane-changing time from/to the BRTlane to/from its neighbor lane and determine the timing sequence for vehicles collaboration. Finally,the experiment demonstrates that the predicted value of the travel time and lane-changing time is much close to the true value. The control strategy of the vehicles collaboration could promise the non-BRT vehicles to share BRT-lane without disturbing BRT's priority.
基金Supported by National Natural Science Foundation of China(Grant No.51575325)Shandong Provincial Natural Science Foundation of China(Grant No.ZR2013EEM007)
文摘Both the seat and cab system of truck play a vital role in ride comfort.The damping matching methods of the two systems are studied separately at present.However,the driver,seat,and cab system are one inseparable whole.In order to further improve ride comfort,the seat suspension is regarded as the fifth suspension of the cab,a new idea of "Five-suspensions" is proposed.Based on this idea,a 4 degree-of-freedom driver-seat-cab coupled system model is presented.Using the tested cab suspensions excitations as inputs and seat acceleration response as compared output,the simulation model is built.Taking optimal ride comfort as target,a new method of damping collaborative optimization for Five-suspensions is proposed.With a practical example of seat and cab system,the damping parameters are optimized and validated by simulation and bench test.The results show the seat vertical frequency-weighted RMS acceleration values tested for the un-optimized and optimized Five-suspensions are 0.50 m/s~2 and 0.39 m/s~2,respectively,with a decrease by 22.0%,which proves the model and method proposed are correct and reliable.The idea of "Five-suspensions" and the method proposed provide a reference for achieving global optimal damping matching of seat suspension and cab suspensions.
基金supported by the Key Research and Development Program of Henan Province (No.241111222900)Natural Science Foundation of Henan (No.242300421716)+2 种基金Key Science and Technology Program of Henan Province (Nos.242102220044 and 242102210034)National Natural Science Foundation of China (No.62103379)Maker Space Incubation Project (No.2023ZCKJ102).
文摘Existing solutions for collaborative trajectory planning using multiple UAVs suffer from issues such as low accuracy,instability,and slow convergence.To address the aforementioned issues,this paper introduces a new method for multiple unmanned aerial vehicle(UAV)3D terrain cooperative trajectory planning based on the cuck0o search golden jackal optimization(CS-GJO)algorithm.A model for single UAV trajectory planning and a model for multi-UAV collaborative trajectory planning have been developed,and the problem of solving the models is restructured into an optimization problem.Building upon the original golden jackal optimization,the use of tent chaotic mapping aids in the generation of the golden jackal's inital population,thereby promoting population diversity.Subsequently,the position update strategy of the cuckoo search algorithm is combined for purpose of update the position information of individual golden jackals,effectively preventing the algorithm from getting stuck in local minima.Finally,the corresponding nonlinear control parameter were developed.The new parameters expedite the decrease in the convergence factor during the pre-exploration stage,resulting in an improved overall search speed of the algorithm.Moreover,they attenuate the decrease in the convergence factor during the post-exploration stage,thereby enhancing the algorithm's global search.The experimental results demonstrate that the CS-GJO algorithm efficiently and accurately accomplishes multi-UAV cooperative trajectory planning in a 3D environment.Compared with other comparative algorithms,the CS-GJO algorithm also has better stability,higher optimization accuracy,and faster convergence speed.