期刊文献+
共找到1,793篇文章
< 1 2 90 >
每页显示 20 50 100
Falcon Optimization Algorithm-Based Energy Efficient Communication Protocol for Cluster-Based Vehicular Networks 被引量:1
1
作者 Youseef Alotaibi B.Rajasekar +1 位作者 R.Jayalakshmi Surendran Rajendran 《Computers, Materials & Continua》 SCIE EI 2024年第3期4243-4262,共20页
Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effect... Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods. 展开更多
关键词 vehicular networks communication protocol CLUSTERING falcon optimization algorithm ROUTING
下载PDF
Anti-Byzantine Attacks Enabled Vehicle Selection for Asynchronous Federated Learning in Vehicular Edge Computing
2
作者 Zhang Cui Xu Xiao +4 位作者 Wu Qiong Fan Pingyi Fan Qiang Zhu Huiling Wang Jiangzhou 《China Communications》 SCIE CSCD 2024年第8期1-17,共17页
In vehicle edge computing(VEC),asynchronous federated learning(AFL)is used,where the edge receives a local model and updates the global model,effectively reducing the global aggregation latency.Due to different amount... In vehicle edge computing(VEC),asynchronous federated learning(AFL)is used,where the edge receives a local model and updates the global model,effectively reducing the global aggregation latency.Due to different amounts of local data,computing capabilities and locations of the vehicles,renewing the global model with same weight is inappropriate.The above factors will affect the local calculation time and upload time of the local model,and the vehicle may also be affected by Byzantine attacks,leading to the deterioration of the vehicle data.However,based on deep reinforcement learning(DRL),we can consider these factors comprehensively to eliminate vehicles with poor performance as much as possible and exclude vehicles that have suffered Byzantine attacks before AFL.At the same time,when aggregating AFL,we can focus on those vehicles with better performance to improve the accuracy and safety of the system.In this paper,we proposed a vehicle selection scheme based on DRL in VEC.In this scheme,vehicle’s mobility,channel conditions with temporal variations,computational resources with temporal variations,different data amount,transmission channel status of vehicles as well as Byzantine attacks were taken into account.Simulation results show that the proposed scheme effectively improves the safety and accuracy of the global model. 展开更多
关键词 asynchronous federated learning byzantine attacks vehicle selection vehicular edge computing
下载PDF
Examining the Use of Scott’s Formula and Link Expiration Time Metric for Vehicular Clustering
3
作者 Fady Samann Shavan Askar 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2421-2444,共24页
Implementing machine learning algorithms in the non-conducive environment of the vehicular network requires some adaptations due to the high computational complexity of these algorithms.K-clustering algorithms are sim... Implementing machine learning algorithms in the non-conducive environment of the vehicular network requires some adaptations due to the high computational complexity of these algorithms.K-clustering algorithms are simplistic,with fast performance and relative accuracy.However,their implementation depends on the initial selection of clusters number(K),the initial clusters’centers,and the clustering metric.This paper investigated using Scott’s histogram formula to estimate the K number and the Link Expiration Time(LET)as a clustering metric.Realistic traffic flows were considered for three maps,namely Highway,Traffic Light junction,and Roundabout junction,to study the effect of road layout on estimating the K number.A fast version of the PAM algorithm was used for clustering with a modification to reduce time complexity.The Affinity propagation algorithm sets the baseline for the estimated K number,and the Medoid Silhouette method is used to quantify the clustering.OMNET++,Veins,and SUMO were used to simulate the traffic,while the related algorithms were implemented in Python.The Scott’s formula estimation of the K number only matched the baseline when the road layout was simple.Moreover,the clustering algorithm required one iteration on average to converge when used with LET. 展开更多
关键词 CLUSTERING vehicular network Scott’s formula FastPAM
下载PDF
Message Verification Protocol Based on Bilinear Pairings and Elliptic Curves for Enhanced Security in Vehicular Ad Hoc Networks
4
作者 Vincent Omollo Nyangaresi Arkan A.Ghaib +6 位作者 Hend Muslim Jasim Zaid Ameen Abduljabbar Junchao Ma Mustafa A.Al Sibahee Abdulla J.Y.Aldarwish Ali Hasan Ali Husam A.Neamah 《Computers, Materials & Continua》 SCIE EI 2024年第10期1029-1057,共29页
Vehicular ad hoc networks(VANETs)provide intelligent navigation and efficient route management,resulting in time savings and cost reductions in the transportation sector.However,the exchange of beacons and messages ov... Vehicular ad hoc networks(VANETs)provide intelligent navigation and efficient route management,resulting in time savings and cost reductions in the transportation sector.However,the exchange of beacons and messages over public channels among vehicles and roadside units renders these networks vulnerable to numerous attacks and privacy violations.To address these challenges,several privacy and security preservation protocols based on blockchain and public key cryptography have been proposed recently.However,most of these schemes are limited by a long execution time and massive communication costs,which make them inefficient for on-board units(OBUs).Additionally,some of them are still susceptible to many attacks.As such,this study presents a novel protocol based on the fusion of elliptic curve cryptography(ECC)and bilinear pairing(BP)operations.The formal security analysis is accomplished using the Burrows–Abadi–Needham(BAN)logic,demonstrating that our scheme is verifiably secure.The proposed scheme’s informal security assessment also shows that it provides salient security features,such as non-repudiation,anonymity,and unlinkability.Moreover,the scheme is shown to be resilient against attacks,such as packet replays,forgeries,message falsifications,and impersonations.From the performance perspective,this protocol yields a 37.88%reduction in communication overheads and a 44.44%improvement in the supported security features.Therefore,the proposed scheme can be deployed in VANETs to provide robust security at low overheads. 展开更多
关键词 ATTACKS BILINEAR elliptic curve cryptography(ECC) PRIVACY SECURITY vehicular ad hoc network(VANET)
下载PDF
Adaptive Resource Allocation Algorithm for 5G Vehicular Cloud Communication
5
作者 Huanhuan Li Hongchang Wei +1 位作者 Zheliang Chen Yue Xu 《Computers, Materials & Continua》 SCIE EI 2024年第8期2199-2219,共21页
The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges,such as low user utilization,unbalanced resource allocation,and extended adaptive allocation time.We pro... The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges,such as low user utilization,unbalanced resource allocation,and extended adaptive allocation time.We propose an adaptive allocation algorithm for mobile cloud communication resources in 5G vehicular networks to address these issues.This study analyzes the components of the 5G vehicular network architecture to determine the performance of different components.It is ascertained that the communication modes in 5G vehicular networks for mobile cloud communication include in-band and out-of-band modes.Furthermore,this study analyzes the single-hop and multi-hop modes in mobile cloud communication and calculates the resource transmission rate and bandwidth in different communication modes.The study also determines the scenario of one-way and two-way vehicle lane cloud communication network connectivity,calculates the probability of vehicle network connectivity under different mobile cloud communication radii,and determines the amount of cloud communication resources required by vehicles in different lane scenarios.Based on the communication status of users in 5G vehicular networks,this study calculates the bandwidth and transmission rate of the allocated channels using Shannon’s formula.It determines the adaptive allocation of cloud communication resources,introduces an objective function to obtain the optimal solution after allocation,and completes the adaptive allocation process.The experimental results demonstrate that,with the application of the proposed method,the maximum utilization of user communication resources reaches approximately 99%.The balance coefficient curve approaches 1,and the allocation time remains under 2 s.This indicates that the proposed method has higher adaptive allocation efficiency. 展开更多
关键词 5G vehicular networks mobile cloud communication resource allocation channel capacity network connectivity communication radius objective function
下载PDF
Collision-free parking recommendation based on multi-agent reinforcement learning in vehicular crowdsensing
6
作者 Xin Li Xinghua Lei +1 位作者 Xiuwen Liu Hang Xiao 《Digital Communications and Networks》 SCIE CSCD 2024年第3期609-619,共11页
The recent proliferation of Fifth-Generation(5G)networks and Sixth-Generation(6G)networks has given rise to Vehicular Crowd Sensing(VCS)systems which solve parking collisions by effectively incentivizing vehicle parti... The recent proliferation of Fifth-Generation(5G)networks and Sixth-Generation(6G)networks has given rise to Vehicular Crowd Sensing(VCS)systems which solve parking collisions by effectively incentivizing vehicle participation.However,instead of being an isolated module,the incentive mechanism usually interacts with other modules.Based on this,we capture this synergy and propose a Collision-free Parking Recommendation(CPR),a novel VCS system framework that integrates an incentive mechanism,a non-cooperative VCS game,and a multi-agent reinforcement learning algorithm,to derive an optimal parking strategy in real time.Specifically,we utilize an LSTM method to predict parking areas roughly for recommendations accurately.Its incentive mechanism is designed to motivate vehicle participation by considering dynamically priced parking tasks and social network effects.In order to cope with stochastic parking collisions,its non-cooperative VCS game further analyzes the uncertain interactions between vehicles in parking decision-making.Then its multi-agent reinforcement learning algorithm models the VCS campaign as a multi-agent Markov decision process that not only derives the optimal collision-free parking strategy for each vehicle independently,but also proves that the optimal parking strategy for each vehicle is Pareto-optimal.Finally,numerical results demonstrate that CPR can accomplish parking tasks at a 99.7%accuracy compared with other baselines,efficiently recommending parking spaces. 展开更多
关键词 Incentive mechanism Non-cooperative VCS game Multi-agent reinforcement learning Collision-free parking strategy vehicular crowdsensing
下载PDF
Task Offloading Based on Vehicular Edge Computing for Autonomous Platooning
7
作者 Sanghyuck Nam Suhwan Kwak +1 位作者 Jaehwan Lee Sangoh Park 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期659-670,共12页
Autonomous platooning technology is regarded as one of the promising technologies for the future and the research is conducted actively.The autonomous platooning task generally requires highly complex computations so ... Autonomous platooning technology is regarded as one of the promising technologies for the future and the research is conducted actively.The autonomous platooning task generally requires highly complex computations so it is difficult to process only with the vehicle’s processing units.To solve this problem,there are many studies on task offloading technique which transfers complex tasks to their neighboring vehicles or computation nodes.However,the existing task offloading techniques which mainly use learning-based algorithms are difficult to respond to the real-time changing road environment due to their complexity.They are also challenging to process computation tasks within 100 ms which is the time limit for driving safety.In this paper,we propose a novel offloading scheme that can support autonomous platooning tasks being processed within the limit and ensure driving safety.The proposed scheme can handle computation tasks by considering the communication bandwidth,delay,and amount of computation.We also conduct simulations in the highway environment to evaluate the existing scheme and the proposed scheme.The result shows that our proposed scheme improves the utilization of nearby computing nodes,and the offloading tasks can be processed within the time for driving safety. 展开更多
关键词 Task offloading vehicular edge computing vehicular ad-hoc network dedicated short-range communication autonomous platooning
下载PDF
Joint offloading strategy based on quantum particle swarm optimization for MEC-enabled vehicular networks 被引量:3
8
作者 Wanneng Shu Yan Li 《Digital Communications and Networks》 SCIE CSCD 2023年第1期56-66,共11页
With the development of the mobile communication technology,a wide variety of envisioned intelligent transportation systems have emerged and put forward more stringent requirements for vehicular communications.Most of... With the development of the mobile communication technology,a wide variety of envisioned intelligent transportation systems have emerged and put forward more stringent requirements for vehicular communications.Most of computation-intensive and power-hungry applications result in a large amount of energy consumption and computation costs,which bring great challenges to the on-board system.It is necessary to exploit traffic offloading and scheduling in vehicular networks to ensure the Quality of Experience(QoE).In this paper,a joint offloading strategy based on quantum particle swarm optimization for the Mobile Edge Computing(MEC)enabled vehicular networks is presented.To minimize the delay cost and energy consumption,a task execution optimization model is formulated to assign the task to the available service nodes,which includes the service vehicles and the nearby Road Side Units(RSUs).For the task offloading process via Vehicle to Vehicle(V2V)communication,a vehicle selection algorithm is introduced to obtain an optimal offloading decision sequence.Next,an improved quantum particle swarm optimization algorithm for joint offloading is proposed to optimize the task delay and energy consumption.To maintain the diversity of the population,the crossover operator is introduced to exchange information among individuals.Besides,the crossover probability is defined to improve the search ability and convergence speed of the algorithm.Meanwhile,an adaptive shrinkage expansion factor is designed to improve the local search accuracy in the later iterations.Simulation results show that the proposed joint offloading strategy can effectively reduce the system overhead and the task completion delay under different system parameters. 展开更多
关键词 Computation offloading MEC-enabled vehicular networks Mobile edge computing Task scheduling
下载PDF
High Stable and Accurate Vehicle Selection Scheme Based on Federated Edge Learning in Vehicular Networks 被引量:2
9
作者 Qiong Wu Xiaobo Wang +3 位作者 Qiang Fan Pingyi Fan Cui Zhang Zhengquan Li 《China Communications》 SCIE CSCD 2023年第3期1-17,共17页
Federated edge learning(FEEL)technology for vehicular networks is considered as a promising technology to reduce the computation workload while keeping the privacy of users.In the FEEL system,vehicles upload data to t... Federated edge learning(FEEL)technology for vehicular networks is considered as a promising technology to reduce the computation workload while keeping the privacy of users.In the FEEL system,vehicles upload data to the edge servers,which train the vehicles’data to update local models and then return the result to vehicles to avoid sharing the original data.However,the cache queue in the edge is limited and the channel between edge server and each vehicle is time-varying.Thus,it is challenging to select a suitable number of vehicles to ensure that the uploaded data can keep a stable cache queue in edge server while maximizing the learning accuracy.Moreover,selecting vehicles with different resource statuses to update data will affect the total amount of data involved in training,which further affects the model accuracy.In this paper,we propose a vehicle selection scheme,which maximizes the learning accuracy while ensuring the stability of the cache queue,where the statuses of all the vehicles in the coverage of edge server are taken into account.The performance of this scheme is evaluated through simulation experiments,which indicates that our proposed scheme can perform better than the known benchmark scheme. 展开更多
关键词 FEEL stability ACCURACY vehicular net-works edge servers
下载PDF
A Machine Learning-Based Attack Detection and Prevention System in Vehicular Named Data Networking 被引量:1
10
作者 Arif Hussain Magsi Ali Ghulam +3 位作者 Saifullah Memon Khalid Javeed Musaed Alhussein Imad Rida 《Computers, Materials & Continua》 SCIE EI 2023年第11期1445-1465,共21页
Named Data Networking(NDN)is gaining a significant attention in Vehicular Ad-hoc Networks(VANET)due to its in-network content caching,name-based routing,and mobility-supporting characteristics.Nevertheless,existing ND... Named Data Networking(NDN)is gaining a significant attention in Vehicular Ad-hoc Networks(VANET)due to its in-network content caching,name-based routing,and mobility-supporting characteristics.Nevertheless,existing NDN faces three significant challenges,including security,privacy,and routing.In particular,security attacks,such as Content Poisoning Attacks(CPA),can jeopardize legitimate vehicles with malicious content.For instance,attacker host vehicles can serve consumers with invalid information,which has dire consequences,including road accidents.In such a situation,trust in the content-providing vehicles brings a new challenge.On the other hand,ensuring privacy and preventing unauthorized access in vehicular(VNDN)is another challenge.Moreover,NDN’s pull-based content retrieval mechanism is inefficient for delivering emergency messages in VNDN.In this connection,our contribution is threefold.Unlike existing rule-based reputation evaluation,we propose a Machine Learning(ML)-based reputation evaluation mechanism that identifies CPA attackers and legitimate nodes.Based on ML evaluation results,vehicles accept or discard served content.Secondly,we exploit a decentralized blockchain system to ensure vehicles’privacy by maintaining their information in a secure digital ledger.Finally,we improve the default routing mechanism of VNDN from pull to a push-based content dissemination using Publish-Subscribe(Pub-Sub)approach.We implemented and evaluated our ML-based classification model on a publicly accessible BurST-Asutralian dataset for Misbehavior Detection(BurST-ADMA).We used five(05)hybrid ML classifiers,including Logistic Regression,Decision Tree,K-Nearest Neighbors,Random Forest,and Gaussian Naive Bayes.The qualitative results indicate that Random Forest has achieved the highest average accuracy rate of 100%.Our proposed research offers the most accurate solution to detect CPA in VNDN for safe,secure,and reliable vehicle communication. 展开更多
关键词 Named data networking vehicular networks REPUTATION CACHING MACHINE-LEARNING
下载PDF
Asymptotic Performance Limits of Vehicular Location and Velocity Detection Towards 6G mmWave Integrated Communication and Sensing 被引量:1
11
作者 Shanshan Ma Bingpeng Zhou 《China Communications》 SCIE CSCD 2023年第9期1-19,共19页
In this paper,joint location and velocity estimation(JLVE)of vehicular terminals for 6G integrated communication and sensing(ICAS)is studied.We aim to provide a unified performance analysis framework for ICAS-based JL... In this paper,joint location and velocity estimation(JLVE)of vehicular terminals for 6G integrated communication and sensing(ICAS)is studied.We aim to provide a unified performance analysis framework for ICAS-based JLVE,which is challenging due to random fading,multipath interference,and complexly coupled system models,and thus the impact of channel fading and multipath interference on JLVE performance is not fully understood.To address this challenge,we exploit structured information models of the JLVE problem to render tractable performance quantification.Firstly,an individual closedform Cramer-Rao lower bound for vehicular localization,velocity detection and channel estimation,respectively,is established for gaining insights into performance limits of ICAS-based JLVE.Secondly,the impact of system resource factors and fading environments,e.g.,system bandwidth,the number of subcarriers,carrier frequency,antenna array size,transmission distance,spatial channel correlation,channel covariance,the number of interference paths and noise power,on the JLVE performance is theoretically analyzed.The associated closed-form JLVE performance analysis can not only provide theoretical foundations for ICAS receiver design but also provide a perfor mance benchmark for various JLVE methods。 展开更多
关键词 integrated sensing and communication vehicular state sensing Cramer-Rao lower bound
下载PDF
A Hierarchal Clustered Based Proactive Caching in NDN-Based Vehicular Network 被引量:1
12
作者 Muhammad Yasir Khan Muhammad Adnan +3 位作者 Jawaid Iqbal Noor ul Amin Byeong-Hee Roh Jehad Ali 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期1185-1208,共24页
An Information-Centric Network(ICN)provides a promising paradigm for the upcoming internet architecture,which will struggle with steady growth in data and changes in accessmodels.Various ICN architectures have been de... An Information-Centric Network(ICN)provides a promising paradigm for the upcoming internet architecture,which will struggle with steady growth in data and changes in accessmodels.Various ICN architectures have been designed,including Named Data Networking(NDN),which is designed around content delivery instead of hosts.As data is the central part of the network.Therefore,NDN was developed to get rid of the dependency on IP addresses and provide content effectively.Mobility is one of the major research dimensions for this upcoming internet architecture.Some research has been carried out to solve the mobility issues,but it still has problems like handover delay and packet loss ratio during real-time video streaming in the case of consumer and producer mobility.To solve this issue,an efficient hierarchical Cluster Base Proactive Caching for Device Mobility Management(CB-PC-DMM)in NDN Vehicular Networks(NDN-VN)is proposed,through which the consumer receives the contents proactively after handover during the mobility of the consumer.When a consumer moves to the next destination,a handover interest is sent to the connected router,then the router multicasts the consumer’s desired data packet to the next hop of neighboring routers.Thus,once the handover process is completed,consumers can easily get the content to the newly connected router.A CB-PCDMM in NDN-VN is proposed that improves the packet delivery ratio and reduces the handover delay aswell as cluster overhead.Moreover,the intra and inter-domain handover handling procedures in CB-PC-DMM for NDN-VN have been described.For the validation of our proposed scheme,MATLAB simulations are conducted.The simulation results show that our proposed scheme reduces the handover delay and increases the consumer’s interest satisfaction ratio.The proposed scheme is compared with the existing stateof-the-art schemes,and the total percentage of handover delays is decreased by up to 0.1632%,0.3267%,2.3437%,2.3255%,and 3.7313%at the mobility speeds of 5 m/s,10 m/s,15 m/s,20 m/s,and 25 m/s,and the efficiency of the packet delivery ratio is improved by up to 1.2048%,5.0632%,6.4935%,6.943%,and 8.4507%.Furthermore,the simulation results of our proposed scheme show better efficiency in terms of Packet Delivery Ratio(PDR)from 0.071 to 0.077 and a decrease in the handover delay from 0.1334 to 0.129. 展开更多
关键词 vehicular network named data networking CACHING hierarchical architecture
下载PDF
A stochastic two-dimensional intelligent driver car-following model with vehicular dynamics
13
作者 祁宏生 应雨燕 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期430-442,共13页
The law of vehicle movement has long been studied under the umbrella of microscopic traffic flow models,especially the car-following(CF)models.These models of the movement of vehicles serve as the backbone of traffic ... The law of vehicle movement has long been studied under the umbrella of microscopic traffic flow models,especially the car-following(CF)models.These models of the movement of vehicles serve as the backbone of traffic flow analysis,simulation,autonomous vehicle development,etc.Two-dimensional(2D)vehicular movement is basically stochastic and is the result of interactions between a driver's behavior and a vehicle's characteristics.Current microscopic models either neglect 2D noise,or overlook vehicle dynamics.The modeling capabilities,thus,are limited,so that stochastic lateral movement cannot be reproduced.The present research extends an intelligent driver model(IDM)by explicitly considering both vehicle dynamics and 2D noises to formulate a stochastic 2D IDM model,with vehicle dynamics based on the stochastic differential equation(SDE)theory.Control inputs from the vehicle include the steer rate and longitudinal acceleration,both of which are developed based on an idea from a traditional intelligent driver model.The stochastic stability condition is analyzed on the basis of Lyapunov theory.Numerical analysis is used to assess the two cases:(i)when a vehicle accelerates from a standstill and(ii)when a platoon of vehicles follow a leader with a stop-and-go speed profile,the formation of congestion and subsequent dispersion are simulated.The results show that the model can reproduce the stochastic 2D trajectories of the vehicle and the marginal distribution of lateral movement.The proposed model can be used in both a simulation platform and a behavioral analysis of a human driver in traffic flow. 展开更多
关键词 intelligent model vehicular dynamics stochastic differential equation stochastic stability
下载PDF
Heterogeneous Fault-Tolerant Aggregate Signcryption with Equality Test for Vehicular Sensor Networks
14
作者 Yang Zhao Jingmin An +1 位作者 Hao Li Saru Kumari 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期555-575,共21页
The vehicular sensor network (VSN) is an important part of intelligent transportation, which is used for real-timedetection and operation control of vehicles and real-time transmission of data and information. In the ... The vehicular sensor network (VSN) is an important part of intelligent transportation, which is used for real-timedetection and operation control of vehicles and real-time transmission of data and information. In the environmentofVSN, massive private data generated by vehicles are transmitted in open channels and used by other vehicle users,so it is crucial to maintain high transmission efficiency and high confidentiality of data. To deal with this problem, inthis paper, we propose a heterogeneous fault-tolerant aggregate signcryption scheme with an equality test (HFTASET).The scheme combines fault-tolerant and aggregate signcryption,whichnot onlymakes up for the deficiency oflow security of aggregate signature, but alsomakes up for the deficiency that aggregate signcryption cannot tolerateinvalid signature. The scheme supports one verification pass when all signcryptions are valid, and it supportsunbounded aggregation when the total number of signcryptions grows dynamically. In addition, this schemesupports heterogeneous equality test, and realizes the access control of private data in different cryptographicenvironments, so as to achieve flexibility in the application of our scheme and realize the function of quick searchof plaintext or ciphertext. Then, the security of HFTAS-ET is demonstrated by strict theoretical analysis. Finally, weconduct strict and standardized experimental operation and performance evaluation, which shows that the schemehas better performance. 展开更多
关键词 Aggregate signcryption FAULT-TOLERANT HETEROGENEOUS equality test vehicular sensor network
下载PDF
Lyapunov-Guided Optimal Service Placement in Vehicular Edge Computing
15
作者 Chaogang Tang Yubin Zhao Huaming Wu 《China Communications》 SCIE CSCD 2023年第3期201-217,共17页
Vehicular Edge Computing(VEC)brings the computational resources in close proximity to the service requestors and thus supports explosive computing demands from smart vehicles.However,the limited computing capability o... Vehicular Edge Computing(VEC)brings the computational resources in close proximity to the service requestors and thus supports explosive computing demands from smart vehicles.However,the limited computing capability of VEC cannot simultaneously respond to large amounts of offloading requests,thus restricting the performance of VEC system.Besides,a mass of traffic data can incur tremendous pressure on the front-haul links between vehicles and the edge server.To strengthen the performance of VEC,in this paper we propose to place services beforehand at the edge server,e.g.,by deploying the services/tasks-oriented data(e.g.,related libraries and databases)in advance at the network edge,instead of downloading them from the remote data center or offloading them from vehicles during the runtime.In this paper,we formulate the service placement problem in VEC to minimize the average response latency for all requested services along the slotted timeline.Specifically,the time slot spanned optimization problem is converted into per-slot optimization problems based on the Lyapunov optimization.Then a greedy heuristic is introduced to the drift-plus-penalty-based algorithm for seeking the approximate solution.The simulation results reveal its advantages over others in terms of optimal values and our strategy can satisfy the long-term energy constraint. 展开更多
关键词 vehicular edge computing service place-ment response latency computational resources
下载PDF
A Blockchain-Assisted Distributed Edge Intelligence for Privacy-Preserving Vehicular Networks
16
作者 Muhammad Firdaus Harashta Tatimma Larasati Kyung-Hyune Rhee 《Computers, Materials & Continua》 SCIE EI 2023年第9期2959-2978,共20页
The enormous volume of heterogeneous data fromvarious smart device-based applications has growingly increased a deeply interlaced cyber-physical system.In order to deliver smart cloud services that require low latency... The enormous volume of heterogeneous data fromvarious smart device-based applications has growingly increased a deeply interlaced cyber-physical system.In order to deliver smart cloud services that require low latency with strong computational processing capabilities,the Edge Intelligence System(EIS)idea is now being employed,which takes advantage of Artificial Intelligence(AI)and Edge Computing Technology(ECT).Thus,EIS presents a potential approach to enforcing future Intelligent Transportation Systems(ITS),particularly within a context of a Vehicular Network(VNets).However,the current EIS framework meets some issues and is conceivably vulnerable tomultiple adversarial attacks because the central aggregator server handles the entire systemorchestration.Hence,this paper introduces the concept of distributed edge intelligence,combining the advantages of Federated Learning(FL),Differential Privacy(DP),and blockchain to address the issues raised earlier.By performing decentralized data management and storing transactions in immutable distributed ledger networks,the blockchain-assisted FL method improves user privacy and boosts traffic prediction accuracy.Additionally,DP is utilized in defending the user’s private data from various threats and is given the authority to bolster the confidentiality of data-sharing transactions.Our model has been deployed in two strategies:First,DP-based FL to strengthen user privacy by masking the intermediate data during model uploading.Second,blockchain-based FL to effectively construct secure and decentralized traffic management in vehicular networks.The simulation results demonstrated that our framework yields several benefits for VNets privacy protection by forming a distributed EIS with privacy budget(ε)of 4.03,1.18,and 0.522,achieving model accuracy of 95.8%,93.78%,and 89.31%,respectively. 展开更多
关键词 Edge intelligence federated learning differential privacy blockchain vehicular networks
下载PDF
Joint computation offloading and resource allocation in vehicular edge computing networks
17
作者 Shuang Liu Jie Tian +1 位作者 Chao Zhai Tiantian Li 《Digital Communications and Networks》 SCIE CSCD 2023年第6期1399-1410,共12页
Vehicular Edge Computing(VEC)is a promising technique to accommodate the computation-intensive and delaysensitive tasks through offloading the tasks to the RoadSide-Unit(RSU)equipped with edge computing servers or nei... Vehicular Edge Computing(VEC)is a promising technique to accommodate the computation-intensive and delaysensitive tasks through offloading the tasks to the RoadSide-Unit(RSU)equipped with edge computing servers or neighboring vehicles.Nevertheless,the limited computation resources of edge computing servers and the mobility of vehicles make the offloading policy design very challenging.In this context,through considering the potential transmission gains brought by the mobility of vehicles,we propose an efficient computation offloading and resource allocation scheme in VEC networks with two kinds of offloading modes,i.e.,Vehicle to Vehicle(V2V)and Vehicle to RSU(V2R).We define a new cost function for vehicular users by incorporating the vehicles’offloading delay,energy consumption,and expenses with a differentiated pricing strategy,as well as the transmission gain.An optimization problem is formulated to minimize the average cost of all the task vehicles under the latency and computation capacity constraints.A distributed iterative algorithm is proposed by decoupling the problem into two subproblems for the offloading mode selection and the resource allocation.Matching theorybased and Lagrangian-based algorithms are proposed to solve the two subproblems,respectively.Simulation results show the proposed algorithm achieves low complexity and significantly improves the system performance compared with three benchmark schemes. 展开更多
关键词 vehicular edge computing Task offloading Matching theory Lagrangian method Distributed algorithm
下载PDF
Lightweight privacy-preserving truth discovery for vehicular air quality monitoring
18
作者 Rui Liu Jianping Pan 《Digital Communications and Networks》 SCIE CSCD 2023年第1期280-291,共12页
Air pollution has become a global concern for many years.Vehicular crowdsensing systems make it possible to monitor air quality at a fine granularity.To better utilize the sensory data with varying credibility,truth d... Air pollution has become a global concern for many years.Vehicular crowdsensing systems make it possible to monitor air quality at a fine granularity.To better utilize the sensory data with varying credibility,truth discovery frameworks are introduced.However,in urban cities,there is a significant difference in traffic volumes of streets or blocks,which leads to a data sparsity problem for truth discovery.Protecting the privacy of participant vehicles is also a crucial task.We first present a data masking-based privacy-preserving truth discovery framework,which incorporates spatial and temporal correlations to solve the sparsity problem.To further improve the truth discovery performance of the presented framework,an enhanced version is proposed with anonymous communication and data perturbation.Both frameworks are more lightweight than the existing cryptography-based methods.We also evaluate the work with simulations and fully discuss the performance and possible extensions. 展开更多
关键词 Privacy preserving Truth discovery Crowdsensing vehicular networks
下载PDF
Push-Based Content Dissemination and Machine Learning-Oriented Illusion Attack Detection in Vehicular Named Data Networking
19
作者 Arif Hussain Magsi Ghulam Muhammad +2 位作者 Sajida Karim Saifullah Memon Zulfiqar Ali 《Computers, Materials & Continua》 SCIE EI 2023年第9期3131-3150,共20页
Recent advancements in the Vehicular Ad-hoc Network(VANET)have tremendously addressed road-related challenges.Specifically,Named Data Networking(NDN)in VANET has emerged as a vital technology due to its outstanding fe... Recent advancements in the Vehicular Ad-hoc Network(VANET)have tremendously addressed road-related challenges.Specifically,Named Data Networking(NDN)in VANET has emerged as a vital technology due to its outstanding features.However,the NDN communication framework fails to address two important issues.The current NDN employs a pull-based content retrieval network,which is inefficient in disseminating crucial content in Vehicular Named Data Networking(VNDN).Additionally,VNDN is vulnerable to illusion attackers due to the administrative-less network of autonomous vehicles.Although various solutions have been proposed for detecting vehicles’behavior,they inadequately addressed the challenges specific to VNDN.To deal with these two issues,we propose a novel push-based crucial content dissemination scheme that extends the scope of VNDN from pullbased content retrieval to a push-based content forwarding mechanism.In addition,we exploitMachine Learning(ML)techniques within VNDN to detect the behavior of vehicles and classify them as attackers or legitimate.We trained and tested our system on the publicly accessible dataset Vehicular Reference Misbehavior(VeReMi).We employed fiveML classification algorithms and constructed the bestmodel for illusion attack detection.Our results indicate that RandomForest(RF)achieved excellent accuracy in detecting all illusion attack types in VeReMi,with an accuracy rate of 100%for type 1 and type 2,96%for type 4 and type 16,and 95%for type 8.Thus,RF can effectively evaluate the behavior of vehicles and identify attacker vehicles with high accuracy.The ultimate goal of our research is to improve content exchange and secureVNDNfromattackers.Thus,ourML-based attack detection and preventionmechanismensures trustworthy content dissemination and prevents attacker vehicles from sharing misleading information in VNDN. 展开更多
关键词 Named data networking vehicular networks pull-push illusion attack machine learning
下载PDF
Cooperative Content Caching and Delivery in Vehicular Networks: A Deep Neural Network Approach
20
作者 Xuelian Cai Jing Zheng +2 位作者 Yuchuan Fu Yao Zhang Weigang Wu 《China Communications》 SCIE CSCD 2023年第3期43-54,共12页
The growing demand for low delay vehicular content has put tremendous strain on the backbone network.As a promising alternative,cooperative content caching among different cache nodes can reduce content access delay.H... The growing demand for low delay vehicular content has put tremendous strain on the backbone network.As a promising alternative,cooperative content caching among different cache nodes can reduce content access delay.However,heterogeneous cache nodes have different communication modes and limited caching capacities.In addition,the high mobility of vehicles renders the more complicated caching environment.Therefore,performing efficient cooperative caching becomes a key issue.In this paper,we propose a cross-tier cooperative caching architecture for all contents,which allows the distributed cache nodes to cooperate.Then,we devise the communication link and content caching model to facilitate timely content delivery.Aiming at minimizing transmission delay and cache cost,an optimization problem is formulated.Furthermore,we use a multi-agent deep reinforcement learning(MADRL)approach to model the decision-making process for caching among heterogeneous cache nodes,where each agent interacts with the environment collectively,receives observations yet a common reward,and learns its own optimal policy.Extensive simulations validate that the MADRL approach can enhance hit ratio while reducing transmission delay and cache cost. 展开更多
关键词 dynamic content delivery cooperative content caching deep neural network vehicular net-works
下载PDF
上一页 1 2 90 下一页 到第
使用帮助 返回顶部