Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effect...Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods.展开更多
In vehicle edge computing(VEC),asynchronous federated learning(AFL)is used,where the edge receives a local model and updates the global model,effectively reducing the global aggregation latency.Due to different amount...In vehicle edge computing(VEC),asynchronous federated learning(AFL)is used,where the edge receives a local model and updates the global model,effectively reducing the global aggregation latency.Due to different amounts of local data,computing capabilities and locations of the vehicles,renewing the global model with same weight is inappropriate.The above factors will affect the local calculation time and upload time of the local model,and the vehicle may also be affected by Byzantine attacks,leading to the deterioration of the vehicle data.However,based on deep reinforcement learning(DRL),we can consider these factors comprehensively to eliminate vehicles with poor performance as much as possible and exclude vehicles that have suffered Byzantine attacks before AFL.At the same time,when aggregating AFL,we can focus on those vehicles with better performance to improve the accuracy and safety of the system.In this paper,we proposed a vehicle selection scheme based on DRL in VEC.In this scheme,vehicle’s mobility,channel conditions with temporal variations,computational resources with temporal variations,different data amount,transmission channel status of vehicles as well as Byzantine attacks were taken into account.Simulation results show that the proposed scheme effectively improves the safety and accuracy of the global model.展开更多
Advancements in the vehicular network technology enable real-time interconnection,data sharing,and intelligent cooperative driving among vehicles.However,malicious vehicles providing illegal and incorrect information ...Advancements in the vehicular network technology enable real-time interconnection,data sharing,and intelligent cooperative driving among vehicles.However,malicious vehicles providing illegal and incorrect information can compromise the interests of vehicle users.Trust mechanisms serve as an effective solution to this issue.In recent years,many researchers have incorporated blockchain technology to manage and incentivize vehicle nodes,incurring significant overhead and storage requirements due to the frequent ingress and egress of vehicles within the area.In this paper,we propose a distributed vehicular network scheme based on trust scores.Specifically,the designed architecture partitions multiple vehicle regions into clusters.Then,cloud supervision systems(CSSs)verify the accuracy of the information transmitted by vehicles.Additionally,the trust scores for vehicles are calculated to reward or penalize them based on the trust evaluation model.Our proposed scheme demonstrates good scalability and effectively addresses the main cause of malicious information distribution among vehicles.Both theoretical and experimental analysis show that our scheme outperforms the compared schemes.展开更多
Implementing machine learning algorithms in the non-conducive environment of the vehicular network requires some adaptations due to the high computational complexity of these algorithms.K-clustering algorithms are sim...Implementing machine learning algorithms in the non-conducive environment of the vehicular network requires some adaptations due to the high computational complexity of these algorithms.K-clustering algorithms are simplistic,with fast performance and relative accuracy.However,their implementation depends on the initial selection of clusters number(K),the initial clusters’centers,and the clustering metric.This paper investigated using Scott’s histogram formula to estimate the K number and the Link Expiration Time(LET)as a clustering metric.Realistic traffic flows were considered for three maps,namely Highway,Traffic Light junction,and Roundabout junction,to study the effect of road layout on estimating the K number.A fast version of the PAM algorithm was used for clustering with a modification to reduce time complexity.The Affinity propagation algorithm sets the baseline for the estimated K number,and the Medoid Silhouette method is used to quantify the clustering.OMNET++,Veins,and SUMO were used to simulate the traffic,while the related algorithms were implemented in Python.The Scott’s formula estimation of the K number only matched the baseline when the road layout was simple.Moreover,the clustering algorithm required one iteration on average to converge when used with LET.展开更多
Vehicular ad hoc networks(VANETs)provide intelligent navigation and efficient route management,resulting in time savings and cost reductions in the transportation sector.However,the exchange of beacons and messages ov...Vehicular ad hoc networks(VANETs)provide intelligent navigation and efficient route management,resulting in time savings and cost reductions in the transportation sector.However,the exchange of beacons and messages over public channels among vehicles and roadside units renders these networks vulnerable to numerous attacks and privacy violations.To address these challenges,several privacy and security preservation protocols based on blockchain and public key cryptography have been proposed recently.However,most of these schemes are limited by a long execution time and massive communication costs,which make them inefficient for on-board units(OBUs).Additionally,some of them are still susceptible to many attacks.As such,this study presents a novel protocol based on the fusion of elliptic curve cryptography(ECC)and bilinear pairing(BP)operations.The formal security analysis is accomplished using the Burrows–Abadi–Needham(BAN)logic,demonstrating that our scheme is verifiably secure.The proposed scheme’s informal security assessment also shows that it provides salient security features,such as non-repudiation,anonymity,and unlinkability.Moreover,the scheme is shown to be resilient against attacks,such as packet replays,forgeries,message falsifications,and impersonations.From the performance perspective,this protocol yields a 37.88%reduction in communication overheads and a 44.44%improvement in the supported security features.Therefore,the proposed scheme can be deployed in VANETs to provide robust security at low overheads.展开更多
The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges,such as low user utilization,unbalanced resource allocation,and extended adaptive allocation time.We pro...The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges,such as low user utilization,unbalanced resource allocation,and extended adaptive allocation time.We propose an adaptive allocation algorithm for mobile cloud communication resources in 5G vehicular networks to address these issues.This study analyzes the components of the 5G vehicular network architecture to determine the performance of different components.It is ascertained that the communication modes in 5G vehicular networks for mobile cloud communication include in-band and out-of-band modes.Furthermore,this study analyzes the single-hop and multi-hop modes in mobile cloud communication and calculates the resource transmission rate and bandwidth in different communication modes.The study also determines the scenario of one-way and two-way vehicle lane cloud communication network connectivity,calculates the probability of vehicle network connectivity under different mobile cloud communication radii,and determines the amount of cloud communication resources required by vehicles in different lane scenarios.Based on the communication status of users in 5G vehicular networks,this study calculates the bandwidth and transmission rate of the allocated channels using Shannon’s formula.It determines the adaptive allocation of cloud communication resources,introduces an objective function to obtain the optimal solution after allocation,and completes the adaptive allocation process.The experimental results demonstrate that,with the application of the proposed method,the maximum utilization of user communication resources reaches approximately 99%.The balance coefficient curve approaches 1,and the allocation time remains under 2 s.This indicates that the proposed method has higher adaptive allocation efficiency.展开更多
The recent proliferation of Fifth-Generation(5G)networks and Sixth-Generation(6G)networks has given rise to Vehicular Crowd Sensing(VCS)systems which solve parking collisions by effectively incentivizing vehicle parti...The recent proliferation of Fifth-Generation(5G)networks and Sixth-Generation(6G)networks has given rise to Vehicular Crowd Sensing(VCS)systems which solve parking collisions by effectively incentivizing vehicle participation.However,instead of being an isolated module,the incentive mechanism usually interacts with other modules.Based on this,we capture this synergy and propose a Collision-free Parking Recommendation(CPR),a novel VCS system framework that integrates an incentive mechanism,a non-cooperative VCS game,and a multi-agent reinforcement learning algorithm,to derive an optimal parking strategy in real time.Specifically,we utilize an LSTM method to predict parking areas roughly for recommendations accurately.Its incentive mechanism is designed to motivate vehicle participation by considering dynamically priced parking tasks and social network effects.In order to cope with stochastic parking collisions,its non-cooperative VCS game further analyzes the uncertain interactions between vehicles in parking decision-making.Then its multi-agent reinforcement learning algorithm models the VCS campaign as a multi-agent Markov decision process that not only derives the optimal collision-free parking strategy for each vehicle independently,but also proves that the optimal parking strategy for each vehicle is Pareto-optimal.Finally,numerical results demonstrate that CPR can accomplish parking tasks at a 99.7%accuracy compared with other baselines,efficiently recommending parking spaces.展开更多
This work aims to examine the vulnerabilities and threats in the applications of intelligent transport systems,especially collision avoidance protocols.It focuses on achieving the availability of network communication...This work aims to examine the vulnerabilities and threats in the applications of intelligent transport systems,especially collision avoidance protocols.It focuses on achieving the availability of network communication among traveling vehicles.Finally,it aims to find a secure solution to prevent blackhole attacks on vehicular network communications.The proposed solution relies on authenticating vehicles by joining a blockchain network.This technology provides identification information and receives cryptography keys.Moreover,the ad hoc on-demand distance vector(AODV)protocol is used for route discovery and ensuring reliable node communication.The system activates an adaptive mode for monitoring communications and continually adjusts trust scores based on packet delivery performance.From the experimental study,we can infer that the proposed protocol has successfully detected and prevented blackhole attacks for different numbers of simulated vehicles and at different traveling speeds.This reduces accident rates by 60%and increases the packet delivery ratio and the throughput of the connecting network by 40%and 20%,respectively.However,extra overheads in delay and memory are required to create and initialize the blockchain network.展开更多
Autonomous platooning technology is regarded as one of the promising technologies for the future and the research is conducted actively.The autonomous platooning task generally requires highly complex computations so ...Autonomous platooning technology is regarded as one of the promising technologies for the future and the research is conducted actively.The autonomous platooning task generally requires highly complex computations so it is difficult to process only with the vehicle’s processing units.To solve this problem,there are many studies on task offloading technique which transfers complex tasks to their neighboring vehicles or computation nodes.However,the existing task offloading techniques which mainly use learning-based algorithms are difficult to respond to the real-time changing road environment due to their complexity.They are also challenging to process computation tasks within 100 ms which is the time limit for driving safety.In this paper,we propose a novel offloading scheme that can support autonomous platooning tasks being processed within the limit and ensure driving safety.The proposed scheme can handle computation tasks by considering the communication bandwidth,delay,and amount of computation.We also conduct simulations in the highway environment to evaluate the existing scheme and the proposed scheme.The result shows that our proposed scheme improves the utilization of nearby computing nodes,and the offloading tasks can be processed within the time for driving safety.展开更多
With the development of the mobile communication technology,a wide variety of envisioned intelligent transportation systems have emerged and put forward more stringent requirements for vehicular communications.Most of...With the development of the mobile communication technology,a wide variety of envisioned intelligent transportation systems have emerged and put forward more stringent requirements for vehicular communications.Most of computation-intensive and power-hungry applications result in a large amount of energy consumption and computation costs,which bring great challenges to the on-board system.It is necessary to exploit traffic offloading and scheduling in vehicular networks to ensure the Quality of Experience(QoE).In this paper,a joint offloading strategy based on quantum particle swarm optimization for the Mobile Edge Computing(MEC)enabled vehicular networks is presented.To minimize the delay cost and energy consumption,a task execution optimization model is formulated to assign the task to the available service nodes,which includes the service vehicles and the nearby Road Side Units(RSUs).For the task offloading process via Vehicle to Vehicle(V2V)communication,a vehicle selection algorithm is introduced to obtain an optimal offloading decision sequence.Next,an improved quantum particle swarm optimization algorithm for joint offloading is proposed to optimize the task delay and energy consumption.To maintain the diversity of the population,the crossover operator is introduced to exchange information among individuals.Besides,the crossover probability is defined to improve the search ability and convergence speed of the algorithm.Meanwhile,an adaptive shrinkage expansion factor is designed to improve the local search accuracy in the later iterations.Simulation results show that the proposed joint offloading strategy can effectively reduce the system overhead and the task completion delay under different system parameters.展开更多
Federated edge learning(FEEL)technology for vehicular networks is considered as a promising technology to reduce the computation workload while keeping the privacy of users.In the FEEL system,vehicles upload data to t...Federated edge learning(FEEL)technology for vehicular networks is considered as a promising technology to reduce the computation workload while keeping the privacy of users.In the FEEL system,vehicles upload data to the edge servers,which train the vehicles’data to update local models and then return the result to vehicles to avoid sharing the original data.However,the cache queue in the edge is limited and the channel between edge server and each vehicle is time-varying.Thus,it is challenging to select a suitable number of vehicles to ensure that the uploaded data can keep a stable cache queue in edge server while maximizing the learning accuracy.Moreover,selecting vehicles with different resource statuses to update data will affect the total amount of data involved in training,which further affects the model accuracy.In this paper,we propose a vehicle selection scheme,which maximizes the learning accuracy while ensuring the stability of the cache queue,where the statuses of all the vehicles in the coverage of edge server are taken into account.The performance of this scheme is evaluated through simulation experiments,which indicates that our proposed scheme can perform better than the known benchmark scheme.展开更多
Named Data Networking(NDN)is gaining a significant attention in Vehicular Ad-hoc Networks(VANET)due to its in-network content caching,name-based routing,and mobility-supporting characteristics.Nevertheless,existing ND...Named Data Networking(NDN)is gaining a significant attention in Vehicular Ad-hoc Networks(VANET)due to its in-network content caching,name-based routing,and mobility-supporting characteristics.Nevertheless,existing NDN faces three significant challenges,including security,privacy,and routing.In particular,security attacks,such as Content Poisoning Attacks(CPA),can jeopardize legitimate vehicles with malicious content.For instance,attacker host vehicles can serve consumers with invalid information,which has dire consequences,including road accidents.In such a situation,trust in the content-providing vehicles brings a new challenge.On the other hand,ensuring privacy and preventing unauthorized access in vehicular(VNDN)is another challenge.Moreover,NDN’s pull-based content retrieval mechanism is inefficient for delivering emergency messages in VNDN.In this connection,our contribution is threefold.Unlike existing rule-based reputation evaluation,we propose a Machine Learning(ML)-based reputation evaluation mechanism that identifies CPA attackers and legitimate nodes.Based on ML evaluation results,vehicles accept or discard served content.Secondly,we exploit a decentralized blockchain system to ensure vehicles’privacy by maintaining their information in a secure digital ledger.Finally,we improve the default routing mechanism of VNDN from pull to a push-based content dissemination using Publish-Subscribe(Pub-Sub)approach.We implemented and evaluated our ML-based classification model on a publicly accessible BurST-Asutralian dataset for Misbehavior Detection(BurST-ADMA).We used five(05)hybrid ML classifiers,including Logistic Regression,Decision Tree,K-Nearest Neighbors,Random Forest,and Gaussian Naive Bayes.The qualitative results indicate that Random Forest has achieved the highest average accuracy rate of 100%.Our proposed research offers the most accurate solution to detect CPA in VNDN for safe,secure,and reliable vehicle communication.展开更多
In this paper,joint location and velocity estimation(JLVE)of vehicular terminals for 6G integrated communication and sensing(ICAS)is studied.We aim to provide a unified performance analysis framework for ICAS-based JL...In this paper,joint location and velocity estimation(JLVE)of vehicular terminals for 6G integrated communication and sensing(ICAS)is studied.We aim to provide a unified performance analysis framework for ICAS-based JLVE,which is challenging due to random fading,multipath interference,and complexly coupled system models,and thus the impact of channel fading and multipath interference on JLVE performance is not fully understood.To address this challenge,we exploit structured information models of the JLVE problem to render tractable performance quantification.Firstly,an individual closedform Cramer-Rao lower bound for vehicular localization,velocity detection and channel estimation,respectively,is established for gaining insights into performance limits of ICAS-based JLVE.Secondly,the impact of system resource factors and fading environments,e.g.,system bandwidth,the number of subcarriers,carrier frequency,antenna array size,transmission distance,spatial channel correlation,channel covariance,the number of interference paths and noise power,on the JLVE performance is theoretically analyzed.The associated closed-form JLVE performance analysis can not only provide theoretical foundations for ICAS receiver design but also provide a perfor mance benchmark for various JLVE methods。展开更多
An Information-Centric Network(ICN)provides a promising paradigm for the upcoming internet architecture,which will struggle with steady growth in data and changes in accessmodels.Various ICN architectures have been de...An Information-Centric Network(ICN)provides a promising paradigm for the upcoming internet architecture,which will struggle with steady growth in data and changes in accessmodels.Various ICN architectures have been designed,including Named Data Networking(NDN),which is designed around content delivery instead of hosts.As data is the central part of the network.Therefore,NDN was developed to get rid of the dependency on IP addresses and provide content effectively.Mobility is one of the major research dimensions for this upcoming internet architecture.Some research has been carried out to solve the mobility issues,but it still has problems like handover delay and packet loss ratio during real-time video streaming in the case of consumer and producer mobility.To solve this issue,an efficient hierarchical Cluster Base Proactive Caching for Device Mobility Management(CB-PC-DMM)in NDN Vehicular Networks(NDN-VN)is proposed,through which the consumer receives the contents proactively after handover during the mobility of the consumer.When a consumer moves to the next destination,a handover interest is sent to the connected router,then the router multicasts the consumer’s desired data packet to the next hop of neighboring routers.Thus,once the handover process is completed,consumers can easily get the content to the newly connected router.A CB-PCDMM in NDN-VN is proposed that improves the packet delivery ratio and reduces the handover delay aswell as cluster overhead.Moreover,the intra and inter-domain handover handling procedures in CB-PC-DMM for NDN-VN have been described.For the validation of our proposed scheme,MATLAB simulations are conducted.The simulation results show that our proposed scheme reduces the handover delay and increases the consumer’s interest satisfaction ratio.The proposed scheme is compared with the existing stateof-the-art schemes,and the total percentage of handover delays is decreased by up to 0.1632%,0.3267%,2.3437%,2.3255%,and 3.7313%at the mobility speeds of 5 m/s,10 m/s,15 m/s,20 m/s,and 25 m/s,and the efficiency of the packet delivery ratio is improved by up to 1.2048%,5.0632%,6.4935%,6.943%,and 8.4507%.Furthermore,the simulation results of our proposed scheme show better efficiency in terms of Packet Delivery Ratio(PDR)from 0.071 to 0.077 and a decrease in the handover delay from 0.1334 to 0.129.展开更多
The law of vehicle movement has long been studied under the umbrella of microscopic traffic flow models,especially the car-following(CF)models.These models of the movement of vehicles serve as the backbone of traffic ...The law of vehicle movement has long been studied under the umbrella of microscopic traffic flow models,especially the car-following(CF)models.These models of the movement of vehicles serve as the backbone of traffic flow analysis,simulation,autonomous vehicle development,etc.Two-dimensional(2D)vehicular movement is basically stochastic and is the result of interactions between a driver's behavior and a vehicle's characteristics.Current microscopic models either neglect 2D noise,or overlook vehicle dynamics.The modeling capabilities,thus,are limited,so that stochastic lateral movement cannot be reproduced.The present research extends an intelligent driver model(IDM)by explicitly considering both vehicle dynamics and 2D noises to formulate a stochastic 2D IDM model,with vehicle dynamics based on the stochastic differential equation(SDE)theory.Control inputs from the vehicle include the steer rate and longitudinal acceleration,both of which are developed based on an idea from a traditional intelligent driver model.The stochastic stability condition is analyzed on the basis of Lyapunov theory.Numerical analysis is used to assess the two cases:(i)when a vehicle accelerates from a standstill and(ii)when a platoon of vehicles follow a leader with a stop-and-go speed profile,the formation of congestion and subsequent dispersion are simulated.The results show that the model can reproduce the stochastic 2D trajectories of the vehicle and the marginal distribution of lateral movement.The proposed model can be used in both a simulation platform and a behavioral analysis of a human driver in traffic flow.展开更多
The vehicular sensor network (VSN) is an important part of intelligent transportation, which is used for real-timedetection and operation control of vehicles and real-time transmission of data and information. In the ...The vehicular sensor network (VSN) is an important part of intelligent transportation, which is used for real-timedetection and operation control of vehicles and real-time transmission of data and information. In the environmentofVSN, massive private data generated by vehicles are transmitted in open channels and used by other vehicle users,so it is crucial to maintain high transmission efficiency and high confidentiality of data. To deal with this problem, inthis paper, we propose a heterogeneous fault-tolerant aggregate signcryption scheme with an equality test (HFTASET).The scheme combines fault-tolerant and aggregate signcryption,whichnot onlymakes up for the deficiency oflow security of aggregate signature, but alsomakes up for the deficiency that aggregate signcryption cannot tolerateinvalid signature. The scheme supports one verification pass when all signcryptions are valid, and it supportsunbounded aggregation when the total number of signcryptions grows dynamically. In addition, this schemesupports heterogeneous equality test, and realizes the access control of private data in different cryptographicenvironments, so as to achieve flexibility in the application of our scheme and realize the function of quick searchof plaintext or ciphertext. Then, the security of HFTAS-ET is demonstrated by strict theoretical analysis. Finally, weconduct strict and standardized experimental operation and performance evaluation, which shows that the schemehas better performance.展开更多
The enormous volume of heterogeneous data fromvarious smart device-based applications has growingly increased a deeply interlaced cyber-physical system.In order to deliver smart cloud services that require low latency...The enormous volume of heterogeneous data fromvarious smart device-based applications has growingly increased a deeply interlaced cyber-physical system.In order to deliver smart cloud services that require low latency with strong computational processing capabilities,the Edge Intelligence System(EIS)idea is now being employed,which takes advantage of Artificial Intelligence(AI)and Edge Computing Technology(ECT).Thus,EIS presents a potential approach to enforcing future Intelligent Transportation Systems(ITS),particularly within a context of a Vehicular Network(VNets).However,the current EIS framework meets some issues and is conceivably vulnerable tomultiple adversarial attacks because the central aggregator server handles the entire systemorchestration.Hence,this paper introduces the concept of distributed edge intelligence,combining the advantages of Federated Learning(FL),Differential Privacy(DP),and blockchain to address the issues raised earlier.By performing decentralized data management and storing transactions in immutable distributed ledger networks,the blockchain-assisted FL method improves user privacy and boosts traffic prediction accuracy.Additionally,DP is utilized in defending the user’s private data from various threats and is given the authority to bolster the confidentiality of data-sharing transactions.Our model has been deployed in two strategies:First,DP-based FL to strengthen user privacy by masking the intermediate data during model uploading.Second,blockchain-based FL to effectively construct secure and decentralized traffic management in vehicular networks.The simulation results demonstrated that our framework yields several benefits for VNets privacy protection by forming a distributed EIS with privacy budget(ε)of 4.03,1.18,and 0.522,achieving model accuracy of 95.8%,93.78%,and 89.31%,respectively.展开更多
Vehicular Edge Computing(VEC)brings the computational resources in close proximity to the service requestors and thus supports explosive computing demands from smart vehicles.However,the limited computing capability o...Vehicular Edge Computing(VEC)brings the computational resources in close proximity to the service requestors and thus supports explosive computing demands from smart vehicles.However,the limited computing capability of VEC cannot simultaneously respond to large amounts of offloading requests,thus restricting the performance of VEC system.Besides,a mass of traffic data can incur tremendous pressure on the front-haul links between vehicles and the edge server.To strengthen the performance of VEC,in this paper we propose to place services beforehand at the edge server,e.g.,by deploying the services/tasks-oriented data(e.g.,related libraries and databases)in advance at the network edge,instead of downloading them from the remote data center or offloading them from vehicles during the runtime.In this paper,we formulate the service placement problem in VEC to minimize the average response latency for all requested services along the slotted timeline.Specifically,the time slot spanned optimization problem is converted into per-slot optimization problems based on the Lyapunov optimization.Then a greedy heuristic is introduced to the drift-plus-penalty-based algorithm for seeking the approximate solution.The simulation results reveal its advantages over others in terms of optimal values and our strategy can satisfy the long-term energy constraint.展开更多
Vehicular Edge Computing(VEC)is a promising technique to accommodate the computation-intensive and delaysensitive tasks through offloading the tasks to the RoadSide-Unit(RSU)equipped with edge computing servers or nei...Vehicular Edge Computing(VEC)is a promising technique to accommodate the computation-intensive and delaysensitive tasks through offloading the tasks to the RoadSide-Unit(RSU)equipped with edge computing servers or neighboring vehicles.Nevertheless,the limited computation resources of edge computing servers and the mobility of vehicles make the offloading policy design very challenging.In this context,through considering the potential transmission gains brought by the mobility of vehicles,we propose an efficient computation offloading and resource allocation scheme in VEC networks with two kinds of offloading modes,i.e.,Vehicle to Vehicle(V2V)and Vehicle to RSU(V2R).We define a new cost function for vehicular users by incorporating the vehicles’offloading delay,energy consumption,and expenses with a differentiated pricing strategy,as well as the transmission gain.An optimization problem is formulated to minimize the average cost of all the task vehicles under the latency and computation capacity constraints.A distributed iterative algorithm is proposed by decoupling the problem into two subproblems for the offloading mode selection and the resource allocation.Matching theorybased and Lagrangian-based algorithms are proposed to solve the two subproblems,respectively.Simulation results show the proposed algorithm achieves low complexity and significantly improves the system performance compared with three benchmark schemes.展开更多
Air pollution has become a global concern for many years.Vehicular crowdsensing systems make it possible to monitor air quality at a fine granularity.To better utilize the sensory data with varying credibility,truth d...Air pollution has become a global concern for many years.Vehicular crowdsensing systems make it possible to monitor air quality at a fine granularity.To better utilize the sensory data with varying credibility,truth discovery frameworks are introduced.However,in urban cities,there is a significant difference in traffic volumes of streets or blocks,which leads to a data sparsity problem for truth discovery.Protecting the privacy of participant vehicles is also a crucial task.We first present a data masking-based privacy-preserving truth discovery framework,which incorporates spatial and temporal correlations to solve the sparsity problem.To further improve the truth discovery performance of the presented framework,an enhanced version is proposed with anonymous communication and data perturbation.Both frameworks are more lightweight than the existing cryptography-based methods.We also evaluate the work with simulations and fully discuss the performance and possible extensions.展开更多
文摘Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods.
基金supported in part by the National Natural Science Foundation of China(No.61701197)in part by the National Key Research and Development Program of China(No.2021YFA1000500(4))in part by the 111 Project(No.B23008).
文摘In vehicle edge computing(VEC),asynchronous federated learning(AFL)is used,where the edge receives a local model and updates the global model,effectively reducing the global aggregation latency.Due to different amounts of local data,computing capabilities and locations of the vehicles,renewing the global model with same weight is inappropriate.The above factors will affect the local calculation time and upload time of the local model,and the vehicle may also be affected by Byzantine attacks,leading to the deterioration of the vehicle data.However,based on deep reinforcement learning(DRL),we can consider these factors comprehensively to eliminate vehicles with poor performance as much as possible and exclude vehicles that have suffered Byzantine attacks before AFL.At the same time,when aggregating AFL,we can focus on those vehicles with better performance to improve the accuracy and safety of the system.In this paper,we proposed a vehicle selection scheme based on DRL in VEC.In this scheme,vehicle’s mobility,channel conditions with temporal variations,computational resources with temporal variations,different data amount,transmission channel status of vehicles as well as Byzantine attacks were taken into account.Simulation results show that the proposed scheme effectively improves the safety and accuracy of the global model.
基金supported the by Anhui Provincial Natural Science Foundation under Grant 2308085MF223in part by the Open Fund of State Key Laboratory for Novel Software Technology under Grant KFKT2022B33+1 种基金in part by the by the Foundation of Yunnan Key Laboratory of Service Computing under Grant YNSC23106in part by the Key Project on Anhui Provincial Natural Science Study by Colleges and Universities under Grant 2023AH050495,2024AH051078 and Grant KJ2020A0513.
文摘Advancements in the vehicular network technology enable real-time interconnection,data sharing,and intelligent cooperative driving among vehicles.However,malicious vehicles providing illegal and incorrect information can compromise the interests of vehicle users.Trust mechanisms serve as an effective solution to this issue.In recent years,many researchers have incorporated blockchain technology to manage and incentivize vehicle nodes,incurring significant overhead and storage requirements due to the frequent ingress and egress of vehicles within the area.In this paper,we propose a distributed vehicular network scheme based on trust scores.Specifically,the designed architecture partitions multiple vehicle regions into clusters.Then,cloud supervision systems(CSSs)verify the accuracy of the information transmitted by vehicles.Additionally,the trust scores for vehicles are calculated to reward or penalize them based on the trust evaluation model.Our proposed scheme demonstrates good scalability and effectively addresses the main cause of malicious information distribution among vehicles.Both theoretical and experimental analysis show that our scheme outperforms the compared schemes.
文摘Implementing machine learning algorithms in the non-conducive environment of the vehicular network requires some adaptations due to the high computational complexity of these algorithms.K-clustering algorithms are simplistic,with fast performance and relative accuracy.However,their implementation depends on the initial selection of clusters number(K),the initial clusters’centers,and the clustering metric.This paper investigated using Scott’s histogram formula to estimate the K number and the Link Expiration Time(LET)as a clustering metric.Realistic traffic flows were considered for three maps,namely Highway,Traffic Light junction,and Roundabout junction,to study the effect of road layout on estimating the K number.A fast version of the PAM algorithm was used for clustering with a modification to reduce time complexity.The Affinity propagation algorithm sets the baseline for the estimated K number,and the Medoid Silhouette method is used to quantify the clustering.OMNET++,Veins,and SUMO were used to simulate the traffic,while the related algorithms were implemented in Python.The Scott’s formula estimation of the K number only matched the baseline when the road layout was simple.Moreover,the clustering algorithm required one iteration on average to converge when used with LET.
基金supported by Teaching Reform Project of Shenzhen University of Technology under Grant No.20231016.
文摘Vehicular ad hoc networks(VANETs)provide intelligent navigation and efficient route management,resulting in time savings and cost reductions in the transportation sector.However,the exchange of beacons and messages over public channels among vehicles and roadside units renders these networks vulnerable to numerous attacks and privacy violations.To address these challenges,several privacy and security preservation protocols based on blockchain and public key cryptography have been proposed recently.However,most of these schemes are limited by a long execution time and massive communication costs,which make them inefficient for on-board units(OBUs).Additionally,some of them are still susceptible to many attacks.As such,this study presents a novel protocol based on the fusion of elliptic curve cryptography(ECC)and bilinear pairing(BP)operations.The formal security analysis is accomplished using the Burrows–Abadi–Needham(BAN)logic,demonstrating that our scheme is verifiably secure.The proposed scheme’s informal security assessment also shows that it provides salient security features,such as non-repudiation,anonymity,and unlinkability.Moreover,the scheme is shown to be resilient against attacks,such as packet replays,forgeries,message falsifications,and impersonations.From the performance perspective,this protocol yields a 37.88%reduction in communication overheads and a 44.44%improvement in the supported security features.Therefore,the proposed scheme can be deployed in VANETs to provide robust security at low overheads.
基金This research was supported by Science and Technology Research Project of Education Department of Jiangxi Province,China(Nos.GJJ2206701,GJJ2206717).
文摘The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges,such as low user utilization,unbalanced resource allocation,and extended adaptive allocation time.We propose an adaptive allocation algorithm for mobile cloud communication resources in 5G vehicular networks to address these issues.This study analyzes the components of the 5G vehicular network architecture to determine the performance of different components.It is ascertained that the communication modes in 5G vehicular networks for mobile cloud communication include in-band and out-of-band modes.Furthermore,this study analyzes the single-hop and multi-hop modes in mobile cloud communication and calculates the resource transmission rate and bandwidth in different communication modes.The study also determines the scenario of one-way and two-way vehicle lane cloud communication network connectivity,calculates the probability of vehicle network connectivity under different mobile cloud communication radii,and determines the amount of cloud communication resources required by vehicles in different lane scenarios.Based on the communication status of users in 5G vehicular networks,this study calculates the bandwidth and transmission rate of the allocated channels using Shannon’s formula.It determines the adaptive allocation of cloud communication resources,introduces an objective function to obtain the optimal solution after allocation,and completes the adaptive allocation process.The experimental results demonstrate that,with the application of the proposed method,the maximum utilization of user communication resources reaches approximately 99%.The balance coefficient curve approaches 1,and the allocation time remains under 2 s.This indicates that the proposed method has higher adaptive allocation efficiency.
基金supported in part by the Natural Science Foundation of Shandong Province of China(ZR202103040180)the Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-004the Fundamental Research Funds for the Central Universities under Grant 20CX05019A.
文摘The recent proliferation of Fifth-Generation(5G)networks and Sixth-Generation(6G)networks has given rise to Vehicular Crowd Sensing(VCS)systems which solve parking collisions by effectively incentivizing vehicle participation.However,instead of being an isolated module,the incentive mechanism usually interacts with other modules.Based on this,we capture this synergy and propose a Collision-free Parking Recommendation(CPR),a novel VCS system framework that integrates an incentive mechanism,a non-cooperative VCS game,and a multi-agent reinforcement learning algorithm,to derive an optimal parking strategy in real time.Specifically,we utilize an LSTM method to predict parking areas roughly for recommendations accurately.Its incentive mechanism is designed to motivate vehicle participation by considering dynamically priced parking tasks and social network effects.In order to cope with stochastic parking collisions,its non-cooperative VCS game further analyzes the uncertain interactions between vehicles in parking decision-making.Then its multi-agent reinforcement learning algorithm models the VCS campaign as a multi-agent Markov decision process that not only derives the optimal collision-free parking strategy for each vehicle independently,but also proves that the optimal parking strategy for each vehicle is Pareto-optimal.Finally,numerical results demonstrate that CPR can accomplish parking tasks at a 99.7%accuracy compared with other baselines,efficiently recommending parking spaces.
文摘This work aims to examine the vulnerabilities and threats in the applications of intelligent transport systems,especially collision avoidance protocols.It focuses on achieving the availability of network communication among traveling vehicles.Finally,it aims to find a secure solution to prevent blackhole attacks on vehicular network communications.The proposed solution relies on authenticating vehicles by joining a blockchain network.This technology provides identification information and receives cryptography keys.Moreover,the ad hoc on-demand distance vector(AODV)protocol is used for route discovery and ensuring reliable node communication.The system activates an adaptive mode for monitoring communications and continually adjusts trust scores based on packet delivery performance.From the experimental study,we can infer that the proposed protocol has successfully detected and prevented blackhole attacks for different numbers of simulated vehicles and at different traveling speeds.This reduces accident rates by 60%and increases the packet delivery ratio and the throughput of the connecting network by 40%and 20%,respectively.However,extra overheads in delay and memory are required to create and initialize the blockchain network.
基金This work was supported in part by the Chung-Ang University Research Scholarship Grants in 2021,and in part by R&D Program for Forest Science Technology(Project No.“2021338B10-2223-CD02)provided by Korea Forest Service(Korea Forestry Promotion Institute).
文摘Autonomous platooning technology is regarded as one of the promising technologies for the future and the research is conducted actively.The autonomous platooning task generally requires highly complex computations so it is difficult to process only with the vehicle’s processing units.To solve this problem,there are many studies on task offloading technique which transfers complex tasks to their neighboring vehicles or computation nodes.However,the existing task offloading techniques which mainly use learning-based algorithms are difficult to respond to the real-time changing road environment due to their complexity.They are also challenging to process computation tasks within 100 ms which is the time limit for driving safety.In this paper,we propose a novel offloading scheme that can support autonomous platooning tasks being processed within the limit and ensure driving safety.The proposed scheme can handle computation tasks by considering the communication bandwidth,delay,and amount of computation.We also conduct simulations in the highway environment to evaluate the existing scheme and the proposed scheme.The result shows that our proposed scheme improves the utilization of nearby computing nodes,and the offloading tasks can be processed within the time for driving safety.
基金funded by National Natural Science Foundation of China (Grant number 62076106).
文摘With the development of the mobile communication technology,a wide variety of envisioned intelligent transportation systems have emerged and put forward more stringent requirements for vehicular communications.Most of computation-intensive and power-hungry applications result in a large amount of energy consumption and computation costs,which bring great challenges to the on-board system.It is necessary to exploit traffic offloading and scheduling in vehicular networks to ensure the Quality of Experience(QoE).In this paper,a joint offloading strategy based on quantum particle swarm optimization for the Mobile Edge Computing(MEC)enabled vehicular networks is presented.To minimize the delay cost and energy consumption,a task execution optimization model is formulated to assign the task to the available service nodes,which includes the service vehicles and the nearby Road Side Units(RSUs).For the task offloading process via Vehicle to Vehicle(V2V)communication,a vehicle selection algorithm is introduced to obtain an optimal offloading decision sequence.Next,an improved quantum particle swarm optimization algorithm for joint offloading is proposed to optimize the task delay and energy consumption.To maintain the diversity of the population,the crossover operator is introduced to exchange information among individuals.Besides,the crossover probability is defined to improve the search ability and convergence speed of the algorithm.Meanwhile,an adaptive shrinkage expansion factor is designed to improve the local search accuracy in the later iterations.Simulation results show that the proposed joint offloading strategy can effectively reduce the system overhead and the task completion delay under different system parameters.
基金supported in part by the National Natural Science Foundation of China(No.61701197)in part by the open research fund of State Key Laboratory of Integrated Services Networks(No.ISN23-11)+3 种基金in part by the National Key Research and Development Program of China(No.2021YFA1000500(4))in part by the 111 Project(No.B23008)in part by the Future Network Scientific Research Fund Project(FNSRFP2021-YB-11)in part by the project of Changzhou Key Laboratory of 5G+Industrial Internet Fusion Application(No.CM20223015)。
文摘Federated edge learning(FEEL)technology for vehicular networks is considered as a promising technology to reduce the computation workload while keeping the privacy of users.In the FEEL system,vehicles upload data to the edge servers,which train the vehicles’data to update local models and then return the result to vehicles to avoid sharing the original data.However,the cache queue in the edge is limited and the channel between edge server and each vehicle is time-varying.Thus,it is challenging to select a suitable number of vehicles to ensure that the uploaded data can keep a stable cache queue in edge server while maximizing the learning accuracy.Moreover,selecting vehicles with different resource statuses to update data will affect the total amount of data involved in training,which further affects the model accuracy.In this paper,we propose a vehicle selection scheme,which maximizes the learning accuracy while ensuring the stability of the cache queue,where the statuses of all the vehicles in the coverage of edge server are taken into account.The performance of this scheme is evaluated through simulation experiments,which indicates that our proposed scheme can perform better than the known benchmark scheme.
基金Supporting Project Number(RSPD2023R553),King Saud University,Riyadh,Saudi Arabia.
文摘Named Data Networking(NDN)is gaining a significant attention in Vehicular Ad-hoc Networks(VANET)due to its in-network content caching,name-based routing,and mobility-supporting characteristics.Nevertheless,existing NDN faces three significant challenges,including security,privacy,and routing.In particular,security attacks,such as Content Poisoning Attacks(CPA),can jeopardize legitimate vehicles with malicious content.For instance,attacker host vehicles can serve consumers with invalid information,which has dire consequences,including road accidents.In such a situation,trust in the content-providing vehicles brings a new challenge.On the other hand,ensuring privacy and preventing unauthorized access in vehicular(VNDN)is another challenge.Moreover,NDN’s pull-based content retrieval mechanism is inefficient for delivering emergency messages in VNDN.In this connection,our contribution is threefold.Unlike existing rule-based reputation evaluation,we propose a Machine Learning(ML)-based reputation evaluation mechanism that identifies CPA attackers and legitimate nodes.Based on ML evaluation results,vehicles accept or discard served content.Secondly,we exploit a decentralized blockchain system to ensure vehicles’privacy by maintaining their information in a secure digital ledger.Finally,we improve the default routing mechanism of VNDN from pull to a push-based content dissemination using Publish-Subscribe(Pub-Sub)approach.We implemented and evaluated our ML-based classification model on a publicly accessible BurST-Asutralian dataset for Misbehavior Detection(BurST-ADMA).We used five(05)hybrid ML classifiers,including Logistic Regression,Decision Tree,K-Nearest Neighbors,Random Forest,and Gaussian Naive Bayes.The qualitative results indicate that Random Forest has achieved the highest average accuracy rate of 100%.Our proposed research offers the most accurate solution to detect CPA in VNDN for safe,secure,and reliable vehicle communication.
基金supported by the National Natural Science Foundation of China under 62001526by Natural Science Foundation of Guangdong Province under 2021A1515012021+2 种基金by National Key R&D Plan of China under Grant 2021YFB2900200partly by Major Talent Program of Guangdong Province under Grant 2021QN02X074by Fundamental Research Funds for the Central Universities, Sun Yat-sen University, under Grant 23QNPY22
文摘In this paper,joint location and velocity estimation(JLVE)of vehicular terminals for 6G integrated communication and sensing(ICAS)is studied.We aim to provide a unified performance analysis framework for ICAS-based JLVE,which is challenging due to random fading,multipath interference,and complexly coupled system models,and thus the impact of channel fading and multipath interference on JLVE performance is not fully understood.To address this challenge,we exploit structured information models of the JLVE problem to render tractable performance quantification.Firstly,an individual closedform Cramer-Rao lower bound for vehicular localization,velocity detection and channel estimation,respectively,is established for gaining insights into performance limits of ICAS-based JLVE.Secondly,the impact of system resource factors and fading environments,e.g.,system bandwidth,the number of subcarriers,carrier frequency,antenna array size,transmission distance,spatial channel correlation,channel covariance,the number of interference paths and noise power,on the JLVE performance is theoretically analyzed.The associated closed-form JLVE performance analysis can not only provide theoretical foundations for ICAS receiver design but also provide a perfor mance benchmark for various JLVE methods。
基金This work was supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2023-2018-0-01431)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation).
文摘An Information-Centric Network(ICN)provides a promising paradigm for the upcoming internet architecture,which will struggle with steady growth in data and changes in accessmodels.Various ICN architectures have been designed,including Named Data Networking(NDN),which is designed around content delivery instead of hosts.As data is the central part of the network.Therefore,NDN was developed to get rid of the dependency on IP addresses and provide content effectively.Mobility is one of the major research dimensions for this upcoming internet architecture.Some research has been carried out to solve the mobility issues,but it still has problems like handover delay and packet loss ratio during real-time video streaming in the case of consumer and producer mobility.To solve this issue,an efficient hierarchical Cluster Base Proactive Caching for Device Mobility Management(CB-PC-DMM)in NDN Vehicular Networks(NDN-VN)is proposed,through which the consumer receives the contents proactively after handover during the mobility of the consumer.When a consumer moves to the next destination,a handover interest is sent to the connected router,then the router multicasts the consumer’s desired data packet to the next hop of neighboring routers.Thus,once the handover process is completed,consumers can easily get the content to the newly connected router.A CB-PCDMM in NDN-VN is proposed that improves the packet delivery ratio and reduces the handover delay aswell as cluster overhead.Moreover,the intra and inter-domain handover handling procedures in CB-PC-DMM for NDN-VN have been described.For the validation of our proposed scheme,MATLAB simulations are conducted.The simulation results show that our proposed scheme reduces the handover delay and increases the consumer’s interest satisfaction ratio.The proposed scheme is compared with the existing stateof-the-art schemes,and the total percentage of handover delays is decreased by up to 0.1632%,0.3267%,2.3437%,2.3255%,and 3.7313%at the mobility speeds of 5 m/s,10 m/s,15 m/s,20 m/s,and 25 m/s,and the efficiency of the packet delivery ratio is improved by up to 1.2048%,5.0632%,6.4935%,6.943%,and 8.4507%.Furthermore,the simulation results of our proposed scheme show better efficiency in terms of Packet Delivery Ratio(PDR)from 0.071 to 0.077 and a decrease in the handover delay from 0.1334 to 0.129.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFE0194400)the National Natural Science Foundation of China(Grant Nos.52272314 and 52131202)+1 种基金the Fund for Humanities and Social Science from the Ministry of Education of China(Grant No.21YJCZH116)the Public Welfare Scientific Research Project(Grant No.LGF22E080007)。
文摘The law of vehicle movement has long been studied under the umbrella of microscopic traffic flow models,especially the car-following(CF)models.These models of the movement of vehicles serve as the backbone of traffic flow analysis,simulation,autonomous vehicle development,etc.Two-dimensional(2D)vehicular movement is basically stochastic and is the result of interactions between a driver's behavior and a vehicle's characteristics.Current microscopic models either neglect 2D noise,or overlook vehicle dynamics.The modeling capabilities,thus,are limited,so that stochastic lateral movement cannot be reproduced.The present research extends an intelligent driver model(IDM)by explicitly considering both vehicle dynamics and 2D noises to formulate a stochastic 2D IDM model,with vehicle dynamics based on the stochastic differential equation(SDE)theory.Control inputs from the vehicle include the steer rate and longitudinal acceleration,both of which are developed based on an idea from a traditional intelligent driver model.The stochastic stability condition is analyzed on the basis of Lyapunov theory.Numerical analysis is used to assess the two cases:(i)when a vehicle accelerates from a standstill and(ii)when a platoon of vehicles follow a leader with a stop-and-go speed profile,the formation of congestion and subsequent dispersion are simulated.The results show that the model can reproduce the stochastic 2D trajectories of the vehicle and the marginal distribution of lateral movement.The proposed model can be used in both a simulation platform and a behavioral analysis of a human driver in traffic flow.
基金supported in part by the Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan Province under Grant SKLACSS-202102in part by the Intelligent Terminal Key Laboratory of Sichuan Province under Grant SCITLAB-1019.
文摘The vehicular sensor network (VSN) is an important part of intelligent transportation, which is used for real-timedetection and operation control of vehicles and real-time transmission of data and information. In the environmentofVSN, massive private data generated by vehicles are transmitted in open channels and used by other vehicle users,so it is crucial to maintain high transmission efficiency and high confidentiality of data. To deal with this problem, inthis paper, we propose a heterogeneous fault-tolerant aggregate signcryption scheme with an equality test (HFTASET).The scheme combines fault-tolerant and aggregate signcryption,whichnot onlymakes up for the deficiency oflow security of aggregate signature, but alsomakes up for the deficiency that aggregate signcryption cannot tolerateinvalid signature. The scheme supports one verification pass when all signcryptions are valid, and it supportsunbounded aggregation when the total number of signcryptions grows dynamically. In addition, this schemesupports heterogeneous equality test, and realizes the access control of private data in different cryptographicenvironments, so as to achieve flexibility in the application of our scheme and realize the function of quick searchof plaintext or ciphertext. Then, the security of HFTAS-ET is demonstrated by strict theoretical analysis. Finally, weconduct strict and standardized experimental operation and performance evaluation, which shows that the schemehas better performance.
基金supported by theRepublic ofKorea’sMSIT(Ministry of Science and ICT)under the ICT Convergence Industry Innovation Technology Development Project(2022-0-00614)supervised by the IITP and partially supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2021R1I1A3046590).
文摘The enormous volume of heterogeneous data fromvarious smart device-based applications has growingly increased a deeply interlaced cyber-physical system.In order to deliver smart cloud services that require low latency with strong computational processing capabilities,the Edge Intelligence System(EIS)idea is now being employed,which takes advantage of Artificial Intelligence(AI)and Edge Computing Technology(ECT).Thus,EIS presents a potential approach to enforcing future Intelligent Transportation Systems(ITS),particularly within a context of a Vehicular Network(VNets).However,the current EIS framework meets some issues and is conceivably vulnerable tomultiple adversarial attacks because the central aggregator server handles the entire systemorchestration.Hence,this paper introduces the concept of distributed edge intelligence,combining the advantages of Federated Learning(FL),Differential Privacy(DP),and blockchain to address the issues raised earlier.By performing decentralized data management and storing transactions in immutable distributed ledger networks,the blockchain-assisted FL method improves user privacy and boosts traffic prediction accuracy.Additionally,DP is utilized in defending the user’s private data from various threats and is given the authority to bolster the confidentiality of data-sharing transactions.Our model has been deployed in two strategies:First,DP-based FL to strengthen user privacy by masking the intermediate data during model uploading.Second,blockchain-based FL to effectively construct secure and decentralized traffic management in vehicular networks.The simulation results demonstrated that our framework yields several benefits for VNets privacy protection by forming a distributed EIS with privacy budget(ε)of 4.03,1.18,and 0.522,achieving model accuracy of 95.8%,93.78%,and 89.31%,respectively.
基金supported by National Natural Science Foundation of China(No.62071327)Tianjin Science and Technology Planning Project(No.22ZYYYJC00020)。
文摘Vehicular Edge Computing(VEC)brings the computational resources in close proximity to the service requestors and thus supports explosive computing demands from smart vehicles.However,the limited computing capability of VEC cannot simultaneously respond to large amounts of offloading requests,thus restricting the performance of VEC system.Besides,a mass of traffic data can incur tremendous pressure on the front-haul links between vehicles and the edge server.To strengthen the performance of VEC,in this paper we propose to place services beforehand at the edge server,e.g.,by deploying the services/tasks-oriented data(e.g.,related libraries and databases)in advance at the network edge,instead of downloading them from the remote data center or offloading them from vehicles during the runtime.In this paper,we formulate the service placement problem in VEC to minimize the average response latency for all requested services along the slotted timeline.Specifically,the time slot spanned optimization problem is converted into per-slot optimization problems based on the Lyapunov optimization.Then a greedy heuristic is introduced to the drift-plus-penalty-based algorithm for seeking the approximate solution.The simulation results reveal its advantages over others in terms of optimal values and our strategy can satisfy the long-term energy constraint.
基金The work was supported in part by the National Natural Science Foundation of China(No.62271295,U22A2003,62201329)Shandong Provincial Natural Science Foundation(ZR2020QF002,ZR2022QF002).
文摘Vehicular Edge Computing(VEC)is a promising technique to accommodate the computation-intensive and delaysensitive tasks through offloading the tasks to the RoadSide-Unit(RSU)equipped with edge computing servers or neighboring vehicles.Nevertheless,the limited computation resources of edge computing servers and the mobility of vehicles make the offloading policy design very challenging.In this context,through considering the potential transmission gains brought by the mobility of vehicles,we propose an efficient computation offloading and resource allocation scheme in VEC networks with two kinds of offloading modes,i.e.,Vehicle to Vehicle(V2V)and Vehicle to RSU(V2R).We define a new cost function for vehicular users by incorporating the vehicles’offloading delay,energy consumption,and expenses with a differentiated pricing strategy,as well as the transmission gain.An optimization problem is formulated to minimize the average cost of all the task vehicles under the latency and computation capacity constraints.A distributed iterative algorithm is proposed by decoupling the problem into two subproblems for the offloading mode selection and the resource allocation.Matching theorybased and Lagrangian-based algorithms are proposed to solve the two subproblems,respectively.Simulation results show the proposed algorithm achieves low complexity and significantly improves the system performance compared with three benchmark schemes.
文摘Air pollution has become a global concern for many years.Vehicular crowdsensing systems make it possible to monitor air quality at a fine granularity.To better utilize the sensory data with varying credibility,truth discovery frameworks are introduced.However,in urban cities,there is a significant difference in traffic volumes of streets or blocks,which leads to a data sparsity problem for truth discovery.Protecting the privacy of participant vehicles is also a crucial task.We first present a data masking-based privacy-preserving truth discovery framework,which incorporates spatial and temporal correlations to solve the sparsity problem.To further improve the truth discovery performance of the presented framework,an enhanced version is proposed with anonymous communication and data perturbation.Both frameworks are more lightweight than the existing cryptography-based methods.We also evaluate the work with simulations and fully discuss the performance and possible extensions.