期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Gas-kinetic numerical method for solving mesoscopic velocity distribution function equation 被引量:9
1
作者 Zhihui Li Hanxin Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2007年第2期121-132,共12页
A gas-kinetic numerical method for directly solving the mesoscopic velocity distribution function equation is presented and applied to the study of three-dimensional complex flows and micro-channel flows covering vari... A gas-kinetic numerical method for directly solving the mesoscopic velocity distribution function equation is presented and applied to the study of three-dimensional complex flows and micro-channel flows covering various flow regimes. The unified velocity distribution function equation describing gas transport phenomena from rarefied transition to continuum flow regimes can be presented on the basis of the kinetic Boltzmann-Shakhov model equation. The gas-kinetic finite-difference schemes for the velocity distribution function are constructed by developing a discrete velocity ordinate method of gas kinetic theory and an unsteady time-splitting technique from computational fluid dynamics. Gas-kinetic boundary conditions and numerical modeling can be established by directly manipulating on the mesoscopic velocity distribution function. A new Gauss-type discrete velocity numerical integra- tion method can be developed and adopted to attack complex flows with different Mach numbers. HPF paral- lel strategy suitable for the gas-kinetic numerical method is investigated and adopted to solve three-dimensional complex problems. High Mach number flows around three-dimensional bodies are computed preliminarilywith massive scale parallel. It is noteworthy and of practical importance that the HPF parallel algorithm for solving three-dimensional complex problems can be effectively developed to cover various flow regimes. On the other hand, the gas-kinetic numerical method is extended and used to study micro-channel gas flows including the classical Couette flow, the Poiseuillechannel flow and pressure-driven gas flows in twodimensional short micro-channels. The numerical experience shows that the gas-kinetic algorithm may be a powerful tool in the numerical simulation of microscale gas flows occuring in the Micro-Electro-Mechanical System (MEMS). 展开更多
关键词 Gas kinetic theory . velocity distributionfunction . Boltzmann model equation .Spacecraft flows . Micro-scale gas flows
下载PDF
THE EVOLUTION EQUATION OF JOINT PDF OF TURBULENT VELOCITY AND DISSIPATION
2
作者 陈义良 S. B. Pope 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第1期25-34,共10页
According to the hypothesis that the dissipation of turbulent kinetic energy satisfies log-normal distribution, a stochastic model of dissipation is provided and the Langevin modef[6] of velocity is modified. Then a j... According to the hypothesis that the dissipation of turbulent kinetic energy satisfies log-normal distribution, a stochastic model of dissipation is provided and the Langevin modef[6] of velocity is modified. Then a joint Pdf equation of turbulent velocity and dissipation is derived. We solve numerically the joint Pdf equation using Monte Carlo method and obtain satisfactory results for decaying turbulence and homogeneous turbulent shear flow. The preliminary results show that the model is well working. 展开更多
关键词 THE EVOLUTION equation OF JOINT PDF OF TURBULENT velocity AND DISSIPATION
下载PDF
MOTION VELOCITY SMOOTH LINK IN HIGH SPEED MACHINING 被引量:9
3
作者 REN Kun FU Jianzhong CHEN Zichen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第2期17-20,共4页
To deal with over-shooting and gouging in high speed machining, a novel approach for velocity smooth link is proposed. Considering discrete tool path, cubic spline curve fitting is used to find dangerous points, and a... To deal with over-shooting and gouging in high speed machining, a novel approach for velocity smooth link is proposed. Considering discrete tool path, cubic spline curve fitting is used to find dangerous points, and according to spatial geometric properties of tool path and the kinematics theory, maximum optimal velocities at dangerous points are obtained. Based on method of velocity control characteristics stored in control system, a fast algorithm for velocity smooth link is analyzed and formulated. On-line implementation results show that the proposed approach makes velocity changing more smoothly compared with traditional velocity control methods and improves productivity greatly. 展开更多
关键词 High speed machining Motion velocity link S-type control equation
下载PDF
Error Analysis of A New Higher Order Boundary Element Method for A Uniform Flow Passing Cylinders
4
作者 SUN Shi-yan CUI Jie BAO Chao-ming 《China Ocean Engineering》 SCIE EI CSCD 2023年第3期369-377,共9页
A higher order boundary element method(HOBEM)is presented for inviscid flow passing cylinders in bounded or unbounded domain.The traditional boundary integral equation is established with respect to the velocity poten... A higher order boundary element method(HOBEM)is presented for inviscid flow passing cylinders in bounded or unbounded domain.The traditional boundary integral equation is established with respect to the velocity potential and its normal derivative.In present work,a new integral equation is derived for the tangential velocity.The boundary is discretized into higher order elements to ensure the continuity of slope at the element nodes.The velocity potential is also expanded with higher order shape functions,in which the unknown coefficients involve the tangential velocity.The expansion then ensures the continuities of the velocity and the slope of the boundary at element nodes.Through extensive comparison of the results for the analytical solution of cylinders,it is shown that the present HOBEM is much more accurate than the conventional BEM. 展开更多
关键词 higher order boundary element method(HOBEM) error analysis integral equations for potential and velocity cylinders
下载PDF
Data-Domain Wave Equation Reflection Traveltime Tomography 被引量:4
5
作者 Bo Feng Huazhong Wang 《Journal of Earth Science》 SCIE CAS CSCD 2015年第4期487-494,共8页
Estimation of an accurate macro velocity model plays an important role in seismic imag- ing and model parameter inversion. Full waveform inversion (FWI) is the classical data-domain inver- sion method. However, the ... Estimation of an accurate macro velocity model plays an important role in seismic imag- ing and model parameter inversion. Full waveform inversion (FWI) is the classical data-domain inver- sion method. However, the misfit function of FWI is highly nonlinear, and the local optimization cannot prevent convergence of the misfit function toward local minima. To converge to the global minimum, FWI needs a good initial model or reliable low frequency component and long offset data. In this article, we present a wave-equation-based reflection traveltime tomography (WERTT) method, which can pro- vide a good background model (initial model) for FWI and (least-square) pre-stack depth migration (LS-PSDM). First, the velocity model is decomposed into a low-wavenumber component (background velocity) and a high-wavenumber component (reflectivity). Second, the primary reflection wave is pre- dicted by wave-equation demigration, and the reflection traveltime is calculated by an automatic picking method. Finally, the misfit function of the 12-norm of the reflection traveltime residuals is mini- mized by a gradient-based method. Numerical tests show that the proposed method can invert a good background model, which can be used as an initial model for LS-PSDM or FWI. 展开更多
关键词 reflection traveltime tomography primary reflection wave wave equation demigration background velocity building rough reflectivity.
原文传递
Hydrodynamic behavior of liquid-solid micro-fluidized beds determined from bed expansion 被引量:2
6
作者 Xiangnan Li Mingyan Liu Yanjun Li 《Particuology》 SCIE EI CAS CSCD 2018年第3期103-112,共10页
The bed-expansion characteristics of liquid-solid micro-fluidized beds were experimentally studied. Bed columns with inner diameters of 0.8, 1.45, and 2.3 mm were fabricated based on capillaries. Five parti- cle sizes... The bed-expansion characteristics of liquid-solid micro-fluidized beds were experimentally studied. Bed columns with inner diameters of 0.8, 1.45, and 2.3 mm were fabricated based on capillaries. Five parti- cle sizes in a range of 22-58 t^m were investigated. Bed-expansion curves were plotted using visually recorded bed-expansion heights. The bed expansion and initial fluidization behavior were compared with predictions for conventional-scale beds, Evident differences are reflected in lower expansion ratios and higher minimum fluidization velocities for micro-fluidized beds. These were attributed to the increase in the internal surface area of the particle beds and specific surface area of wall contact. The wall effect for micro-fluidized beds at higher particle/bed diameter ratios caused higher local voidage and an increase in expansion ratio. Correlations for the exponent and proportional coefficient in the Richardson-Zaki equation for micro-fluidized beds were proposed. The minimum fluidization velocities were correlated using a modification of the Ergun equation. 展开更多
关键词 Micro-fluidized bed Wall effect Minimum fluidization velocity Richardson-Zaki equation Ergun equation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部