The stratigraphical cross-sections of the Yangtze River incised-valley near the No.l, No.3 and No.4 Nanjing Yangtze River bridges were established with respective bore date and documents. By ^14C age analysis of the s...The stratigraphical cross-sections of the Yangtze River incised-valley near the No.l, No.3 and No.4 Nanjing Yangtze River bridges were established with respective bore date and documents. By ^14C age analysis of the samples of four drilling cores near the No.4 Bridge (to be built), we can find that the time range of paleo-valley is dated in the LGM at a depth of-60 m to -90 m near Nanjing. It is also indicated that the deep incised-valley channel was narrow and the river flowed swiftly. The ancient Yangtze River deep channel presented partially and deeply incised features near the No.1 Bridge. According to previous publications, much research has been done on the main paleo-channel of the Yangtze River, but few results have been achieved on discharge estimation. In this paper, the incipient velocity and average veIocity of the LGM was calculated with Vc=4.60d^1/3h^1/6, Vc=1.281g( 13.15. h /d95) √gd, V≈6.5u*|h/d90|^1/6 etc., in terms of the river shape, sedimentary grain size and sequences near the No.3 and No.1 bridges. Moreover, the discharge in Nanjing reach of the Yangtze River during the LGM has been estimated to be around 12,000-16,000 m^3/s according to the relationship of discharge, velocity of flow and cross-section.展开更多
A new equation is proposed for the design of armor units on protected river banks under the combined action of ship-induced waves and river flow.Existing observed field and experimental data in the literature have bee...A new equation is proposed for the design of armor units on protected river banks under the combined action of ship-induced waves and river flow.Existing observed field and experimental data in the literature have been examined and a valuable database has been developed.Different conditions,including the river water depth,flow velocity,river bank slope,Froude number,wave height,wave period,and wave obliquity have been considered.Results from an empirical equation (Bhowmik,1978) that only considers the maximum wave height and river bank slope have been compared with the results calculated by the newly developed equation.Calculated results have also been verified against field data.Results show that not only the maximum wave height and river bank slope but also the water depth,flow velocity,wave length,wave obliquity,and wave period are important parameters for predicting the mean diameter of the armor units,highlighting the multivariate behavior of protecting the river bank in the presence of ship-induced waves and river flow velocity.展开更多
The spatial position, seasonal variability and intensity of the main flow and the cyclonic circulation of the Black Sea waters along the axis of the divergence were identified. Corresponding calculations were done wit...The spatial position, seasonal variability and intensity of the main flow and the cyclonic circulation of the Black Sea waters along the axis of the divergence were identified. Corresponding calculations were done with using of the dynamic method and based on the climate data set of temperature and salinity for the surface and intermediate layers of the Black Sea. The important role of spring floods on the rivers of the northern-western Black Sea in the development of the water circulation features was shown because this river's water and main Black Sea current interact with the periphery of the western and eastern cyclonic circulation. This process is dominated at the western part sea surface cyclone: in spring and at eastern, in summer and autumn. The flow rate and nature of seasonal migration cyclonic centers were estimated. The results of research are based on a relatively large scale (40' latitude and 60' longitude) averaging and we have identified the main area of water divergence. Small, localized areas of convergence and divergence of flow that are presented in the Black Sea were not included into the scope of our research.展开更多
While log law is an equation theoretically derived for near-bed region, in most cases, power law has been researched by experimental methods. Thus, many consider it as an empirical equation and fixed power law exponen...While log law is an equation theoretically derived for near-bed region, in most cases, power law has been researched by experimental methods. Thus, many consider it as an empirical equation and fixed power law exponents such as 1/6 and 1/7 are generally applied. However, exponent of power law is an index representing bed resistance related with relative roughness and furthermore influences the shapes of vertical velocity distribution. The purpose of this study is to investigate characteristics of vertical velocity distribution of the natural rivers by testing and optimizing previous methods used for determination of power law exponent with vertical velocity distribution data collected with ADCPs during the years of 2005 to 2009 from rivers in South Korea. Roughness coefficient has been calculated from the equation of Limerinos. And using theoretical and empirical formulae, and representing relationships between bed resistance and power law exponent, it has been evaluated whether the exponents suggested by these equations appropriately reproduce vertical velocity distribution of actual rivers. As a result, it has been confirmed that there is an increasing trend of power law exponent as bed resistance increases. Therefore, in order to correctly predict vertical velocity distribution in the natural rivers, it is necessary to use an exponent that reflects flow conditions at the field.展开更多
针对典型感潮河网地区水环境污染日趋严重与洪涝灾害频发的问题,为优化河网水动力和降低河道漫溢风险,基于Info Works ICM(integrated catchment management)模型建立福州市仓山区龙津阳岐片区城市水文模型与一维河网水动力耦合模型,以2...针对典型感潮河网地区水环境污染日趋严重与洪涝灾害频发的问题,为优化河网水动力和降低河道漫溢风险,基于Info Works ICM(integrated catchment management)模型建立福州市仓山区龙津阳岐片区城市水文模型与一维河网水动力耦合模型,以2022年6月14日实测降雨及河道水位数据对模型参数进行校准,平均纳什效率系数为0.78,平均洪峰误差为1.5%。设计并模拟3种晴天工况和3种“卢碧”台风雨天工况,结果表明:晴天从无调控到工况3,随着引水量的增加,河网平均流速逐步增加,总体增加66.4%,河道水动力提升显著;雨天从原有调控工况到工况3,随着河道预降水位值增大,关键断面平均超警历时逐步减少,总体下降73%,河道漫溢风险明显降低。构建河网水文水动力耦合模型和工况优选,可为仓山区进一步提升河网水动力与城市汛期洪涝灾害防治能力的方案制定提供决策依据,也可为其他同类研究提供借鉴。展开更多
基金National Basic Research Program of China, No.2003CB415201-8 National Natural Science Foundation of China. No.40871010 Doctorate Foundation of Linyi Normal University, No.BS08021
文摘The stratigraphical cross-sections of the Yangtze River incised-valley near the No.l, No.3 and No.4 Nanjing Yangtze River bridges were established with respective bore date and documents. By ^14C age analysis of the samples of four drilling cores near the No.4 Bridge (to be built), we can find that the time range of paleo-valley is dated in the LGM at a depth of-60 m to -90 m near Nanjing. It is also indicated that the deep incised-valley channel was narrow and the river flowed swiftly. The ancient Yangtze River deep channel presented partially and deeply incised features near the No.1 Bridge. According to previous publications, much research has been done on the main paleo-channel of the Yangtze River, but few results have been achieved on discharge estimation. In this paper, the incipient velocity and average veIocity of the LGM was calculated with Vc=4.60d^1/3h^1/6, Vc=1.281g( 13.15. h /d95) √gd, V≈6.5u*|h/d90|^1/6 etc., in terms of the river shape, sedimentary grain size and sequences near the No.3 and No.1 bridges. Moreover, the discharge in Nanjing reach of the Yangtze River during the LGM has been estimated to be around 12,000-16,000 m^3/s according to the relationship of discharge, velocity of flow and cross-section.
文摘A new equation is proposed for the design of armor units on protected river banks under the combined action of ship-induced waves and river flow.Existing observed field and experimental data in the literature have been examined and a valuable database has been developed.Different conditions,including the river water depth,flow velocity,river bank slope,Froude number,wave height,wave period,and wave obliquity have been considered.Results from an empirical equation (Bhowmik,1978) that only considers the maximum wave height and river bank slope have been compared with the results calculated by the newly developed equation.Calculated results have also been verified against field data.Results show that not only the maximum wave height and river bank slope but also the water depth,flow velocity,wave length,wave obliquity,and wave period are important parameters for predicting the mean diameter of the armor units,highlighting the multivariate behavior of protecting the river bank in the presence of ship-induced waves and river flow velocity.
文摘The spatial position, seasonal variability and intensity of the main flow and the cyclonic circulation of the Black Sea waters along the axis of the divergence were identified. Corresponding calculations were done with using of the dynamic method and based on the climate data set of temperature and salinity for the surface and intermediate layers of the Black Sea. The important role of spring floods on the rivers of the northern-western Black Sea in the development of the water circulation features was shown because this river's water and main Black Sea current interact with the periphery of the western and eastern cyclonic circulation. This process is dominated at the western part sea surface cyclone: in spring and at eastern, in summer and autumn. The flow rate and nature of seasonal migration cyclonic centers were estimated. The results of research are based on a relatively large scale (40' latitude and 60' longitude) averaging and we have identified the main area of water divergence. Small, localized areas of convergence and divergence of flow that are presented in the Black Sea were not included into the scope of our research.
文摘While log law is an equation theoretically derived for near-bed region, in most cases, power law has been researched by experimental methods. Thus, many consider it as an empirical equation and fixed power law exponents such as 1/6 and 1/7 are generally applied. However, exponent of power law is an index representing bed resistance related with relative roughness and furthermore influences the shapes of vertical velocity distribution. The purpose of this study is to investigate characteristics of vertical velocity distribution of the natural rivers by testing and optimizing previous methods used for determination of power law exponent with vertical velocity distribution data collected with ADCPs during the years of 2005 to 2009 from rivers in South Korea. Roughness coefficient has been calculated from the equation of Limerinos. And using theoretical and empirical formulae, and representing relationships between bed resistance and power law exponent, it has been evaluated whether the exponents suggested by these equations appropriately reproduce vertical velocity distribution of actual rivers. As a result, it has been confirmed that there is an increasing trend of power law exponent as bed resistance increases. Therefore, in order to correctly predict vertical velocity distribution in the natural rivers, it is necessary to use an exponent that reflects flow conditions at the field.
文摘针对典型感潮河网地区水环境污染日趋严重与洪涝灾害频发的问题,为优化河网水动力和降低河道漫溢风险,基于Info Works ICM(integrated catchment management)模型建立福州市仓山区龙津阳岐片区城市水文模型与一维河网水动力耦合模型,以2022年6月14日实测降雨及河道水位数据对模型参数进行校准,平均纳什效率系数为0.78,平均洪峰误差为1.5%。设计并模拟3种晴天工况和3种“卢碧”台风雨天工况,结果表明:晴天从无调控到工况3,随着引水量的增加,河网平均流速逐步增加,总体增加66.4%,河道水动力提升显著;雨天从原有调控工况到工况3,随着河道预降水位值增大,关键断面平均超警历时逐步减少,总体下降73%,河道漫溢风险明显降低。构建河网水文水动力耦合模型和工况优选,可为仓山区进一步提升河网水动力与城市汛期洪涝灾害防治能力的方案制定提供决策依据,也可为其他同类研究提供借鉴。