Aiming at the development characteristics of Bohai P oilfield, formation mechanism of reservoir damage was analyzed by mines of mineral composition, micro-pore structure, and seepage mechanism. Microscopic petrologica...Aiming at the development characteristics of Bohai P oilfield, formation mechanism of reservoir damage was analyzed by mines of mineral composition, micro-pore structure, and seepage mechanism. Microscopic petrological observations and laboratory core experiments show that the content of clay minerals such as the Imon mixed layer and kaolinite is high with high porosity and good pore roar structure;the water sensitivity is medium to strong, The lower the salinity of injected water, the greater the drop in core permeability;the velocity-sensitive damage is strong, and permeability increases with the increase in flow velocity, and a large number of particles are observed in the produced fluid under the microscope. Aiming at the contradiction of velocity sensitivity between core permeability increase and the permeability decrease near the wellbore, the velocity sensitivity seepage model of “long-distance migration and blockage near the well” is proposed, and the permeability and formation distribution formula are deduced. The calculated value is close to the test value of actual pressure recovery test. The research results of water sensitivity and velocity sensitivity provide important guidance for Bohai P oilfield to improve production and absorption capacity and reservoir protection.展开更多
For complicated geometries, it is ineflicient to integrate over the entire domain. A new approach for optimization is presented here, based on sensitivity analysis of local do- main and deformation of full domain. Acc...For complicated geometries, it is ineflicient to integrate over the entire domain. A new approach for optimization is presented here, based on sensitivity analysis of local do- main and deformation of full domain. Accurate results of design sensitivity analysis are ob- tained with this approach in shape optimization. This method is shown to be efficient when used in optimization programs and results in less distortion of the mesh.展开更多
Laser Speckle Contrast Imaging(LSCI)plays an important role in studying blood flow,but suffers from limited penetration depth of light in turbid tissue.The strong scattering of tissue obviously reduces the image contr...Laser Speckle Contrast Imaging(LSCI)plays an important role in studying blood flow,but suffers from limited penetration depth of light in turbid tissue.The strong scattering of tissue obviously reduces the image contrast which decreases the sensitivity to flow velocity.Some image processing or optical clearing methods have been proposed to lessen the deficiency,but quantitative assessment of improvement is seldom given.In this study,LSCI was applied to monitor the blood flow through a capillary embedded within various tissue phantoms at depths of 0.25,0.45,0.65,0.85 and 1.05 mm,and the flow velocity in capillary was controllable from 0 to 4mm/s.Here,glycerol,a common optical clearing agent,was mixed with Intralipid at different volume ratio to make the reduced scattering coefficient of tissue phantom decrease from 13.00 to 0.50 cm−1.The quantitative analysis demonstrates that the optical clearing method can obviously enhance the image contrast,imaging depth,and sensitivity to blood flow velocity.Comparing the Laser Speckle Contrast Analysis methods and the optical clearing method,we find that for typical turbid tissue,the sensitivity to velocity estimated by the Laser Speckle Temporal Contrast Analysis(LSTCA)is twice of that by the Laser Speckle Spatial Contrast Analysis(LSSCA);while the sensitivity to velocity estimated by using the two analysis methods has a 10-fold increase,respectively,if addition of glycerol makes the reduced scattering coefficient of tissue phantom decrease by 30%.Combining the LSTCA and the optical clearing method,the sensitivity to flow velocity will be further enhanced.展开更多
The paper introduces some findings about a sensitivity analysis conducted on every geometrical and mechanical parameters which characterize the use of a railway superstructure at the high velocity. This analysis was c...The paper introduces some findings about a sensitivity analysis conducted on every geometrical and mechanical parameters which characterize the use of a railway superstructure at the high velocity. This analysis was carried out by implementing a forecast model that is derived from the simplified Gazetas and Dobry one. This model turns out to be particularly appropriate in the explication of problems connected to high velocity, since it evaluates both inertial and viscous effects activated by the moving load speed. The model implementation requires the transfer function determination that represents the action occurred by the bed surfaces on the railway and it therefore contains information concerning the geometrical and the mechanical characteristics of the embankment, of the ballast and of the sub-ballast. The transfer function H has been evaluated with the finite elements method and particularly, by resorting the ANSYS code with a harmonic structural analysis in the frequencies field. The authors, from the critic examination of the system's dynamics response in its entirety, glean a series of observations both of a general and a specific character, finally attaining a propose of a design modification of the standard railway superstructure at the high velocity of train operation adopted today especially in Italy.展开更多
The theoretical method estimating ski-jump trajectory was paid attention to and modified. The present method is based on the effects of the take-off velocity and the angle in the sensitivity analysis of parameters. Th...The theoretical method estimating ski-jump trajectory was paid attention to and modified. The present method is based on the effects of the take-off velocity and the angle in the sensitivity analysis of parameters. The experiments are conducted for a triangular-shaped flip bucket in order to reveal the relationships between the take-off velocity and its influencing factors. The results show that, the take-off velocity has a much larger effect on the impact point than the take-off angle. The take-off velocities of both upper and lower trajectories are all functions of the approach flow Froude number, the deflector height and the deflection angle, especially, the results of the deflection angle of 25° could be directly used when this angle is larger than 25° Meanwhile, this method is checked and the maximum relative errors of both U calx and L_(calx) are 5.1% and 5.6%, respectively.展开更多
文摘Aiming at the development characteristics of Bohai P oilfield, formation mechanism of reservoir damage was analyzed by mines of mineral composition, micro-pore structure, and seepage mechanism. Microscopic petrological observations and laboratory core experiments show that the content of clay minerals such as the Imon mixed layer and kaolinite is high with high porosity and good pore roar structure;the water sensitivity is medium to strong, The lower the salinity of injected water, the greater the drop in core permeability;the velocity-sensitive damage is strong, and permeability increases with the increase in flow velocity, and a large number of particles are observed in the produced fluid under the microscope. Aiming at the contradiction of velocity sensitivity between core permeability increase and the permeability decrease near the wellbore, the velocity sensitivity seepage model of “long-distance migration and blockage near the well” is proposed, and the permeability and formation distribution formula are deduced. The calculated value is close to the test value of actual pressure recovery test. The research results of water sensitivity and velocity sensitivity provide important guidance for Bohai P oilfield to improve production and absorption capacity and reservoir protection.
文摘For complicated geometries, it is ineflicient to integrate over the entire domain. A new approach for optimization is presented here, based on sensitivity analysis of local do- main and deformation of full domain. Accurate results of design sensitivity analysis are ob- tained with this approach in shape optimization. This method is shown to be efficient when used in optimization programs and results in less distortion of the mesh.
基金supported by the National Natural Science Foundation(Grant Nos.30770552,60828009 and 30911120074)of China.
文摘Laser Speckle Contrast Imaging(LSCI)plays an important role in studying blood flow,but suffers from limited penetration depth of light in turbid tissue.The strong scattering of tissue obviously reduces the image contrast which decreases the sensitivity to flow velocity.Some image processing or optical clearing methods have been proposed to lessen the deficiency,but quantitative assessment of improvement is seldom given.In this study,LSCI was applied to monitor the blood flow through a capillary embedded within various tissue phantoms at depths of 0.25,0.45,0.65,0.85 and 1.05 mm,and the flow velocity in capillary was controllable from 0 to 4mm/s.Here,glycerol,a common optical clearing agent,was mixed with Intralipid at different volume ratio to make the reduced scattering coefficient of tissue phantom decrease from 13.00 to 0.50 cm−1.The quantitative analysis demonstrates that the optical clearing method can obviously enhance the image contrast,imaging depth,and sensitivity to blood flow velocity.Comparing the Laser Speckle Contrast Analysis methods and the optical clearing method,we find that for typical turbid tissue,the sensitivity to velocity estimated by the Laser Speckle Temporal Contrast Analysis(LSTCA)is twice of that by the Laser Speckle Spatial Contrast Analysis(LSSCA);while the sensitivity to velocity estimated by using the two analysis methods has a 10-fold increase,respectively,if addition of glycerol makes the reduced scattering coefficient of tissue phantom decrease by 30%.Combining the LSTCA and the optical clearing method,the sensitivity to flow velocity will be further enhanced.
文摘The paper introduces some findings about a sensitivity analysis conducted on every geometrical and mechanical parameters which characterize the use of a railway superstructure at the high velocity. This analysis was carried out by implementing a forecast model that is derived from the simplified Gazetas and Dobry one. This model turns out to be particularly appropriate in the explication of problems connected to high velocity, since it evaluates both inertial and viscous effects activated by the moving load speed. The model implementation requires the transfer function determination that represents the action occurred by the bed surfaces on the railway and it therefore contains information concerning the geometrical and the mechanical characteristics of the embankment, of the ballast and of the sub-ballast. The transfer function H has been evaluated with the finite elements method and particularly, by resorting the ANSYS code with a harmonic structural analysis in the frequencies field. The authors, from the critic examination of the system's dynamics response in its entirety, glean a series of observations both of a general and a specific character, finally attaining a propose of a design modification of the standard railway superstructure at the high velocity of train operation adopted today especially in Italy.
基金supported by the National Natural Science Foun-dation of China(Grant Nos.51509128,51179056)the PAPD(Grant No.3014-SYS1401)
文摘The theoretical method estimating ski-jump trajectory was paid attention to and modified. The present method is based on the effects of the take-off velocity and the angle in the sensitivity analysis of parameters. The experiments are conducted for a triangular-shaped flip bucket in order to reveal the relationships between the take-off velocity and its influencing factors. The results show that, the take-off velocity has a much larger effect on the impact point than the take-off angle. The take-off velocities of both upper and lower trajectories are all functions of the approach flow Froude number, the deflector height and the deflection angle, especially, the results of the deflection angle of 25° could be directly used when this angle is larger than 25° Meanwhile, this method is checked and the maximum relative errors of both U calx and L_(calx) are 5.1% and 5.6%, respectively.