Based on the long period digital surface wave data recorded by 11 CDSN stations and 11 IRIS stations, the dispersion curves of the group velocities of fundamental mode Rayleigh waves along 647 paths, with the periods ...Based on the long period digital surface wave data recorded by 11 CDSN stations and 11 IRIS stations, the dispersion curves of the group velocities of fundamental mode Rayleigh waves along 647 paths, with the periods from 10 s to 92 s, were measured by multi-filter. Their distribution at 25 central periods within the region of 18~54N, 70~140E was inverted by Dimtar-Yanovskaya method. Within the period from 10 s to 15.9 s, the group velocity distribution is laterally inhomogeneous and is closely related to geotectonic units, with two low velocity zones located in the Tarim basin and the East China Sea and its north regions, respectively. From 21 s to 33 s, the framework of tectonic blocks is revealed. From 36.6 s to 40 s, the lithospheric subdivision of the Chinese mainland is obviously uncovered, with distinct boundaries among the South-North seismic belt, the Tibetan plateau, the North China, the South China and the Northeast China. Four cross-sections of group velocity distribution with period along 30N, 38N, 90E and 120E, are discussed, respectively, which display the basic features of the crust and upper mantle of the Chinese mainland and its neighboring regions. There are distinguished velocity differences among the different tectonic blocks. There are low-velocity-zones (LVZ) in the middle crust of the eastern Tibetan plateau, high velocity featured as stable platform in the Tarim basin and the Yangtze platform, shallow and thick low-velocity-zone in the upper mantle of the North China. The upper mantle LVZ in the East China Sea and the Japan Sea is related to the frictional heat from the subduction of the Philippine slab and the strong extension since the Himalayan orogenic period.展开更多
In order to investigate the interrelations of crust and upper mantle tectonics and its velocity distribution as well as seismicity in the Yanhuai basin and its surrounding area, a nearly EW trending Beijing Huailai ...In order to investigate the interrelations of crust and upper mantle tectonics and its velocity distribution as well as seismicity in the Yanhuai basin and its surrounding area, a nearly EW trending Beijing Huailai Fengzhen wide angle reflection/refraction profile, which obliquely passes through seismic zone of Zhangjiakou Bohai Sea and coincides with a deep reflection profile in the Yanhuai basin, was completed recently. The results show: The crust presents layered structures and its thickness gradually increases from 35.0 km in Shunyi to 42.0 km in the west end of the profile; the interior crustal interfaces appear approximately horizontal or slowly sloping down from east to west; In the Yanhuai basin, the crust presents the characteristics of higher velocities alternating with the lower ones and the low velocity bodies obviously exist in the lower part of upper crust. Moreover, there are two deep crustal fault zones which stretch to the Moho discontinuity, are closely related with the seismicity in the Yanhuai area.展开更多
Chao Lake is a Geoheritage site on the active Tan-Lu Fault between the Yangtze craton,the North China craton,and the Dabie orogenic belt in the southeast.This segment of the fault is not well constrained at depth part...Chao Lake is a Geoheritage site on the active Tan-Lu Fault between the Yangtze craton,the North China craton,and the Dabie orogenic belt in the southeast.This segment of the fault is not well constrained at depth partly due to the overprinting of the fault zone by intrusive materials and its relatively low seismic activity and sparse seismic station coverage.This study took advantage of a dense seismic array deployed around Chao Lake to delineate the P-wave velocity variations in the crust and uppermost mantle using teleseismic earthquake arrival time tomography.The station-pair double-difference with waveform crosscorrelation technique was employed.We used a multiscale resolution 3-D initial model derived from the combination of highresolution 3-D v S models within the region of interest to account for the lateral heterogeneity in the upper crust.The results revealed that the velocity of the upper crust is segmented with structures trending in the direction of the strike of the fault.Sedimentary basins are delineated on both sides of the fault with slow velocities,while the fault zone is characterized by high velocity in the crust and uppermost mantle.The high-velocity structure in the fault zone shows characteristics of magma intrusion that may be connected to the Mesozoic magmatism in and around the Middle and Lower Yangtze River Metallogenic Belt(MLYMB),implying that the Tan-Lu fault might have formed a channel for magma intrusion.Magmatic material in Chao Lake is likely connected to the partial melting,assimilation,storage,and homogenization of the uppermost mantle and the lower crustal rocks.The intrusions,however,seem to have suffered severe regional extension along the Tan-Lu fault driven by the eastward Paleo-Pacific plate subduction,thereby losing its deep trail due to extensional erosion.展开更多
Two seismic refraction profiles which are perpendicular to each other, running through Xingtai earthquake region,reveal the anomalous variations of crust-mantle velocity structure and deep tectonics. Pg wave attenuate...Two seismic refraction profiles which are perpendicular to each other, running through Xingtai earthquake region,reveal the anomalous variations of crust-mantle velocity structure and deep tectonics. Pg wave attenuatesrapidly with distance in the earthquake region. A group of strong reflections from a depth of 21. 0 km can be identified along the section from Longyao to the piedmont of Taihang Mountain, but P. waves characterized generally by strong amplitude are not obvious. Under the earthquake region and its western neighboring region, thecrustal velocity structure features high and low velocities changed alternatively. From North China plain toShanxi plateau, the velocity at the top of the upper mantle decreases progressively, while crustal thickness increases by 11 km. Moho uplifts locally in the earthquake region. The crustal fault stretching deeply to Moho andthe discontinuous sections of Moho in the earthquake region are supposed to be the channels and zones for magmatic intrusion. The uplifting of upper mantle and magmatic intrusion are responsible for the formation ofanomalous crust-mantle structures and extending basins, and for the occurrence of Xingtai earthquake as well.展开更多
A method of three dimensional (3-D) model parameterization is presented that makes forward and inverse problems become easy. The velocity and interface structure of crust and upper mantle are described by a set of hig...A method of three dimensional (3-D) model parameterization is presented that makes forward and inverse problems become easy. The velocity and interface structure of crust and upper mantle are described by a set of highly smoothed functions. Shooting ray tracing method is chosen to calculate the ray paths for both forward and inverse problems. The partial derivatives of traveltime with respect to parameters of the model grids are calculated analytically while rays are being traced. Because velocity and interface functions have second-order continuous partial derivatives, the geometrical shadow zones at the surface caused by scattering and focusing of ray paths can be prevented. After ray tracing, an equation consisting of matrix and vectors for inverse problem is obtained. We use singular value decomposition method with damped factor to solve the equation. A synthetic data set which consists of several in-line profiles is used to test the methods. The results show that the methods are robust. Compared with the two dimensional method, the 3-D inversion method can give the right position of interfaces and the velocity structure when the crustal model is complicated.展开更多
Another comparative interpretation was conducted with respect to the data from 5 DSS profiles in the central and southern parts of Shanxi, leading to the conclusion that in Linxian, Linfen and Xingtai earthquake regio...Another comparative interpretation was conducted with respect to the data from 5 DSS profiles in the central and southern parts of Shanxi, leading to the conclusion that in Linxian, Linfen and Xingtai earthquake regions, through which the five profiles pass, there exist anomalous crust mantle structure and abyssal crustal faults extending to Moho, all being regarded as the deep indications for earthquake occurrence.展开更多
In this study,we compiled and analyzed 69310 P-wave travel-time data from 6639 earthquake events.These events(M≥2.0)occurred from 1980 s to June 2019 and were recorded at 319 seismic stations(Chinese Earthquake Netwo...In this study,we compiled and analyzed 69310 P-wave travel-time data from 6639 earthquake events.These events(M≥2.0)occurred from 1980 s to June 2019 and were recorded at 319 seismic stations(Chinese Earthquake Networks Center)in the study area.We adopted the double-difference seismic tomographic method(tomo DD)to invert the 3-D P-wave velocity structure and constrain the crust-upper mantle architecture of the Middle and Lower Reaches of the Yangtze River Metallogenic Belt(MLYB).A 1-D initial model extracted from wide-angle seismic profiles was used in the seismic tomography,which greatly reduced the inversion residual.Our results indicate that reliable velocity structure of th e uppermost mantle can be obtained when Pn is involved in the tomography.Our results show that:(1)the pattern of the uppermost mantle velocity structure corresponds well with the geological partitioning:a nearly E-W-trending low-velocity zone is present beneath the Dabie Orogen,in contrast to the mainly NE-trending low-velocity anomalies beneath the Jiangnan Orogen.They suggest the presence of thickened lower crust beneath the orogens in the study area.In contrast,the Yangtze and Cathaysia blocks are characterized by relatively high-velocity anomalies;(2)both the ultra-high-pressure(UHP)metamorphic rocks in the Dabie Orogen and the low-pressure metamorphic rocks in the Zhangbaling dome are characterized by high-velocity anomalies.The upper crust in the Dabie Orogen is characterized by a low-velocity belt,sandwiched between two high velocity zones in a horizontal direction,with discontinuous low-velocity layers in the middle crust.The keel of the Dabie Orogen is mainly preserved beneath its northern section.We infer that the lower crustal delamination may have mainly occurred in the southern Dabie Orogen,which caused the mantle upwelling responsible for the formation of the granitic magmas emplaced in the middle crust as the low-velocity layers observed there.Continuous deep-level compression likely squeezed the granitic magma upward to intrude the upper crustal UHP metamorphic rocks,forming the'sandwich'velocity structure there;(3)high-velocity updoming is widespread in the crust-mantle transition zone beneath the MLYB.From the Anqing-Guichi ore field northeastward to the Luzong,Tongling,Ningwu and Ningzhen orefields,high-velocity anomalies in the crust-mantle transition zone increase rapidly in size and are widely distributed.The updoming also exists in the crust-mantle transition zone beneath the Jiurui and Edongnan orefields,but the high-velocity anomalies are mainly stellate distributed.The updoming high-velocity zone beneath the MLYB generally extends from the crust-mantle transition zone to the middle crust,different from the velocity structure in the upper crust.The upper crust beneath the Early Cretaceous extension-related Luzong and Ningwu volcanic basins is characterized by high velocity zones,in contrast to the low velocity anomalies beneath the Late Jurassic to Early Cretaceous compression-related Tongling ore field.The MLYB may have undergone a compressive-to-extensional transition during the Yanshanian(Jurassic-Cretaceous)period,during which extensive magmatism occurred.The near mantle-crustal boundary updoming was likely caused by asthenospheric underplating at the base of the lower crust.The magmas may have ascended through major crustal faults,undergoing AFC(assimilation and fractional crystallization)processes,became emplaced in the fault-bounded basins or Paleozoic sequences,eventually forming the many Cu-Fe polymetallic deposits there.展开更多
Using recent data of geoscience transaction in Northeast China, the author analyses and studies the crust-upper mantle structure feature of the North Tanlu fault zone. The result shows the crust-mantle structure are o...Using recent data of geoscience transaction in Northeast China, the author analyses and studies the crust-upper mantle structure feature of the North Tanlu fault zone. The result shows the crust-mantle structure are obvious difference at both sides of the North Tanlu fault zone. The fault activity and segmentation are closely related with abruptly change zone of the crust-upper mantle structure. There is a clear mirror image relationship between the big geomorphic shape and asthenosphere undulate, the former restricts tectonic stability and tectonic style of dif- ferent crustal units. The significantly strengthening seismicity of north set and south set in the North Tanlu fault zone just correspond to the low-velocity and high conductivity layer of crust-upper mantle. In the North Tanlu fault zone, the main controlling structure of the mid-strong seismic generally consists of the active fault sectors, whose crust-mantle structure is more complicated in rigidity massif.展开更多
Observational data from some of the 10-odd deep seismic sounding profiles in Bohai Bay and its adjacent areas were processed with the methods of two-dimensional ray tracing, travel-time fitting and synthetic seismogra...Observational data from some of the 10-odd deep seismic sounding profiles in Bohai Bay and its adjacent areas were processed with the methods of two-dimensional ray tracing, travel-time fitting and synthetic seismogram. The crust and upper-mantle velocity structure model in this area was built. The results show that the crust and upper mantle structures present obvious lateral and vertical inhomogeneity. The upper mantle uplifts near Yongqing of northeast Jizhong depression, in Bohai Bay of Huanghua depression and near Kenli of Jiyang depression, where crustal depths are about 31 km, 28 km and 29 km, respectively. According to the dynamic and kinetic characteristics of seismic waves as well as the seismic interfaces and velocity contour undulation in the 2-D velocity structure model, three deep crustal fault zones are inferred in the area. Low velocity (5.90~6.10 km/s) layers (bodies) exist on one or two sides of these deep crustal fault zones.展开更多
The fine structure of crust mantle transition zone in Yanqing Hailai(Yan Huai basin) basin has been analyzed and discussed by using the data of Yanqing Hailai deep seismic reflection profile and Beijing Huailai ...The fine structure of crust mantle transition zone in Yanqing Hailai(Yan Huai basin) basin has been analyzed and discussed by using the data of Yanqing Hailai deep seismic reflection profile and Beijing Huailai Fengzhen deep seismic sounding profile obtained respectively in 1992 and in 1993. The primary model is established based on CDP stacking profile. The phases of seismic refraction waves and wide angle reflection waves are analyzed, travel time inversion is carried out and 2 D ray tracing is computed. Synthetic seismograms are completed by using re flectivity method for waveform fitting of phases P M and P M′, they are reflection waves from both the upper and the lower boundaries of the crust mantle transition zone in this basin. The results show that the P M′ reflection waves are stronger at some points and come from the lower boundary of Moho discontinuity. It is confirmed and inter preted that the Moho discontinuity in Yanqing Hailai basin consists of a group of thin layers with alternatively higher and lower velocities.展开更多
In this paper, the typical velocity structures and average velocities of the crust in six different active tectonic block regions are presented on the basis of previous studies and their tectonic implications are disc...In this paper, the typical velocity structures and average velocities of the crust in six different active tectonic block regions are presented on the basis of previous studies and their tectonic implications are discussed. The results show that different tectonic units have different features of crustal velocity structures. In general, there are low velocity distributions in the crust in regions with strong tectonic activities, and the scales of low velocity distributions are related to the tectonic activities. The average velocities are relatively low in such regions. This reflects strong crustal deformation and the variations of states of matter in the crust resulting from strong tectonic movements. These regions are also seismically active zones frequented by strong earthquakes. Therefore, studying crustal velocity structures of these regions is of great importance to understanding crustal geodynamic process and seismogenic tectonic background.展开更多
The average upper mantle P wave velocity structure and lateral heterogeneity in the northern part of China and Mongolia are investigated by waveform inversion of broadband body waveform data recorded by CDSN and digit...The average upper mantle P wave velocity structure and lateral heterogeneity in the northern part of China and Mongolia are investigated by waveform inversion of broadband body waveform data recorded by CDSN and digital stations around China. The average model has a low P wave velocity lid (about 7.8~8.0 km·s -1 ) with thickness about 60 km, and two discontinuities with velocity jumps of 0.29 km·s -1 and 0.55 km·s -1 at depth of 410 km and 665 km respectively. In the Jungger basin, the P wave velocity of uppermost mantle is about 7.7 km·s -1 . The lid thickness (90~100 km) and velocity gradient (average gradient is greater than 0.005 5/s) are large. At the depth of 140 km the P wave velocity reaches to 8.2 km·s -1 . Near in Baikal, the lid is about 30 km thick with average P wave velocity of 8.00~8.05 km·s -1 .展开更多
3-D velocity structure of P wave in the upper mantle beneath southwestern China and its adjacent areas (10°N [similar to] 36°N, 70°E [similar to] 110°E) down to the depth of 400 km has been studied...3-D velocity structure of P wave in the upper mantle beneath southwestern China and its adjacent areas (10°N [similar to] 36°N, 70°E [similar to] 110°E) down to the depth of 400 km has been studied by using 80 974 P-wave first arrival times recorded at 165 stations from 7 053 events both within the studying areas, selected from the ISC bulletin and the Bulletin of China and NEIC fundamental seismic network. With a resolution of grid spacing of 2°×2°, the velocity heterogeneity on the horizontal profile is obvious though it attenuates with the depth increasing. On the vertical profiles of velocity along the latitude of 16°N and 24°N, the collision and extrusion of India plate to Eurasia plate is displayed, and a remarkable velocity difference between India plate and Eurasia plate is shown. In the vertical profile along the longitude of 90°E, the subducting of India plate northward beneath Eurasia plate (Tibet plateau) is also obvious. On the horizontal profile at the depth of 90 km, a slow velocity stripe from Myitkyina, Myanmar to Donghai, Vietnam seems to be related to Honghe fault belt. An illustration method of describing the resolution more directly and exactly has been proposed and utilized in this paper.展开更多
Based on the results of two dimension velo city structure, 1∶100 000 aeromagnetic anomaly, 1∶200 000 bouguer gravity anom aly and seismic anisotropy of Jiaodong and neighboring region in Shandong, China , the info...Based on the results of two dimension velo city structure, 1∶100 000 aeromagnetic anomaly, 1∶200 000 bouguer gravity anom aly and seismic anisotropy of Jiaodong and neighboring region in Shandong, China , the information of geophysical field was divided into two parts: deep and sh allow focus fields. And then, the information of two different fields was c ombined with that of deep seated geology and ore deposit features. The syntheti c result was adopted to analyze three dimension structure, to probe into crust mantle coupling effects of mineralization and dynamics of ore formation system .展开更多
The three dimensional S wave velocity structure of the crust and upper mantle of Chinese mainland and its neighboring region is obtained by genetic algorithm of surface wave tomography, with smoothness constraint, bas...The three dimensional S wave velocity structure of the crust and upper mantle of Chinese mainland and its neighboring region is obtained by genetic algorithm of surface wave tomography, with smoothness constraint, based on 25 wave group velocities for the periods from 10 s to 92 s, measured from long period Rayleigh waves recorded by 11 stations of CDSN and 12 digital seismometers surrounding China. The S wave velocity image is shown on two latitudinal sections along 30°N and 38°N, two longitudinal sections along 90°E and 120°E, and four horizontal slices at the different depths.展开更多
As an interoceanic arc,the Kyushu-Palau Ridge(KPR)is an exceptional place to study the subduction process and related magmatism through its interior velocity structure.However,the crustal structure and its nature of t...As an interoceanic arc,the Kyushu-Palau Ridge(KPR)is an exceptional place to study the subduction process and related magmatism through its interior velocity structure.However,the crustal structure and its nature of the KPR,especially the southern part with limited seismic data,are still in mystery.In order to unveil the crustal structure of the southern part of the KPR,this study uses deep reflection/refraction seismic data recorded by 24 ocean bottom seismometers to reconstruct a detailed P-wave velocity model along the ridge.Results show strong alongridge variations either on the crustal velocity or the thickness of the KPR.P-wave velocity model is featured with(1)a crustal thickness between 6–12 km,with velocity increases from 4.0 km/s to 7.0 km/s from top to bottom;(2)high gradient(~1 s^(-1))in the upper crust but low one(<0.2 s^(-1))in the lower crust;(3)a slow mantle velocity between 7.2 km/s and 7.6 km/s in the uppermost mantle;and(4)inhomogenous velocity anomalies in the lower crust beneath seamounts.By comparing with the mature arc in the Izu-Bonin-Mariana arc in the east,this study suggests the southern part of KPR is a thicken oceanic crust rather than a typical arc crust.The origin of low velocities in the lower crust and upper mantle may be related with crustal differentiation,which implies advanced crustal evolution from normal oceanic crust to partly thicken oceanic crust.High velocities in the lower crust are related to the difference in magmatism.展开更多
Magnetic structure of the continental crust is one of the important geophysical aspects of continental lithosphere. This paper reviews the achievements in the research into the magnetic structure and its significance ...Magnetic structure of the continental crust is one of the important geophysical aspects of continental lithosphere. This paper reviews the achievements in the research into the magnetic structure and its significance for crustal tectonics, composition, metamorphic facies, crust mantle interaction and magnetization of deep crust. Further studies are suggested according to the basic principles of rock and mineral magnetism in terms of petrology, geochemistry and structural geology. Emphasis is placed on new geological ideas and synthetic studies of the relationship between deep geological processes and interpretation of gravity, magnetic, electrical and seismic data. The relationships between magnetic, density, electricity, velocity, geothermal structures and deep geodynamic processes are taken as a system for the research into the deep geology.展开更多
Since the Xingtai (邢台) earthquake in 1966, China Earthquake Administration has carried out a survey campaign along more than thirty deep seismic sounding (DSS) profiles altogether about twenty thousand kilometer...Since the Xingtai (邢台) earthquake in 1966, China Earthquake Administration has carried out a survey campaign along more than thirty deep seismic sounding (DSS) profiles altogether about twenty thousand kilometers long in North China to study the velocity structure of the crust and the upper mantle in this region, and has obtained a great number of research findings. However, these researches have not provided a 3D velocity structure model of the crust of North China and cannot provide seismic evidence for the study of the deep tectonic characteristics of the crust of the whole region. Hence, based on the information from the published data of the DSS profiles, we have chosen 14 profiles to obtain a 3D velocity structure model of North China using the vectorization function of the GIS software (Arc/Info) and the Kriging data gridding method. With this velocity structure model, we have drawn the following conclusions: (1) The P-wave velocity of the uppermost crust of North China changes dramatically, exhibiting a complicated velocity structure in plane view. It can be divided into three velocity zones mainly trending towards north-west. In the research area, the lowest-velocity zones lie in the Haihe (海河) plain and Bohai (渤海) Bay. Although the geological structure of the sedimentary overburden in the study area is somewhat inherited by the upper crust, there are still several differences between them. (2) Generally, the P-wave velocity of the crust increases with depth in the study area, but there still exists local velocity reversion. In the east, low-velocity anomalies of the Haihe plain gradually disappear with increasing depth, and the Shanxi (山西) graben in the west is mainly characterized by relatively low velocity anomalies. Bounded by the Taihang (太行) Mountains, the eastern and western parts differ in structural trend of stratum above the crystalline basement. The structural trend of the Huanghuaihai (黄淮海) block in the east is mainly north-east, while that of the Shanxi block and the eastern edge of the Ordos block is mainly north-west. (3) According to the morphological features of Moho, the crust of the study area can be divided into six blocks. In the Shanxi block, Moho apppears like a nearly south-north trending depression belt with a large crustal thickness. In the southern edge of the Inner Mongolia block and the south of the Yanshan (燕山) block,the Moho exhibits a feature of fold belt, trending nearly towards east-west. In the eastern edge of the Ordos block, the structure of Moho is relatively complex, presenting a pattern of fold trending nearly towards north-west with alternating convexes and concaves. Beneath the Huanghuaihai block, the middle and northern parts of the North China rift zone, the Moho is the shallowest in the entire region, with alternating uplifts and depressions in its shape. For the anteclise zone in the west of Shandong (山东) Province, the Moho is discontinuous for the fault depression extending in the north-west direction along Zaozhuang (枣庄) -Qufu (曲阜).展开更多
In this paper the authors have discussed the results of investigation of fine velocity structure in the basement layer of the Simao-Zhongdian DSS profile in western Yunnan region.The depth of upper Pz interface of the...In this paper the authors have discussed the results of investigation of fine velocity structure in the basement layer of the Simao-Zhongdian DSS profile in western Yunnan region.The depth of upper Pz interface of the basement layer is about 0-3.5 km,and the depth of the lower P1 interface is 11.0-17.0 km.The velocity of the basement layer on the southern side of the Jinhe-Erhai deep fault is 5.70-6.30 km/s,and has increased to 6.30-6.50 km/s on the northern side.Their transitional zone is situated near Jianchuan County.Along the profile some localities,where the faults cut across the lateral variation of Pz interface velocity,are quite obvious in addition to the variation in depth.The velocity isopleths are relatively sparse in the southern region of JYQ S.P.(shot - point),near the DC S.P.,and in the south ZT S.P.The magma has apparently risen up along the deep faults to the upper crust in these localities,forming a large intrusive rock zone in the basement layer.In Jinggu region the basaltic magma展开更多
1-D and 2-D calculation and interpretation are carried out with the DSS data from the western section of Heze-Changzhi profile and the southern section of Zhengzhou-Jinan profile. 2-D velocity structure is determined ...1-D and 2-D calculation and interpretation are carried out with the DSS data from the western section of Heze-Changzhi profile and the southern section of Zhengzhou-Jinan profile. 2-D velocity structure is determined in Tangyin graben and its adjacent area. The result shows that velocity structure of the crust and upper mantle is obviously different in vertical and lateral directions. Crustal thickness varies apparently in this area, and there are local low velocity blocks in the interior crust. The swelling M-discontinuity corresponds to Tangyin graben and Moho depth at the highest swelling position is 31 km. Toward the east, its depth gradually increases to 32 km in Xunxian swelling; toward the west, M-discontinuity becomes a steep zone at the piedmont uplift of Taihang Mountain and reaches 40 km at depth near Changzhi. Through analyzing the relationship between historical earthquakes and deep structure in North China, we infer that seismic risk exists in Tangyin graben and its adjacent area.展开更多
基金Climb Project Continental Dynamics of East Asia and Joint Seismological Science Foundation of China (9507413).
文摘Based on the long period digital surface wave data recorded by 11 CDSN stations and 11 IRIS stations, the dispersion curves of the group velocities of fundamental mode Rayleigh waves along 647 paths, with the periods from 10 s to 92 s, were measured by multi-filter. Their distribution at 25 central periods within the region of 18~54N, 70~140E was inverted by Dimtar-Yanovskaya method. Within the period from 10 s to 15.9 s, the group velocity distribution is laterally inhomogeneous and is closely related to geotectonic units, with two low velocity zones located in the Tarim basin and the East China Sea and its north regions, respectively. From 21 s to 33 s, the framework of tectonic blocks is revealed. From 36.6 s to 40 s, the lithospheric subdivision of the Chinese mainland is obviously uncovered, with distinct boundaries among the South-North seismic belt, the Tibetan plateau, the North China, the South China and the Northeast China. Four cross-sections of group velocity distribution with period along 30N, 38N, 90E and 120E, are discussed, respectively, which display the basic features of the crust and upper mantle of the Chinese mainland and its neighboring regions. There are distinguished velocity differences among the different tectonic blocks. There are low-velocity-zones (LVZ) in the middle crust of the eastern Tibetan plateau, high velocity featured as stable platform in the Tarim basin and the Yangtze platform, shallow and thick low-velocity-zone in the upper mantle of the North China. The upper mantle LVZ in the East China Sea and the Japan Sea is related to the frictional heat from the subduction of the Philippine slab and the strong extension since the Himalayan orogenic period.
文摘In order to investigate the interrelations of crust and upper mantle tectonics and its velocity distribution as well as seismicity in the Yanhuai basin and its surrounding area, a nearly EW trending Beijing Huailai Fengzhen wide angle reflection/refraction profile, which obliquely passes through seismic zone of Zhangjiakou Bohai Sea and coincides with a deep reflection profile in the Yanhuai basin, was completed recently. The results show: The crust presents layered structures and its thickness gradually increases from 35.0 km in Shunyi to 42.0 km in the west end of the profile; the interior crustal interfaces appear approximately horizontal or slowly sloping down from east to west; In the Yanhuai basin, the crust presents the characteristics of higher velocities alternating with the lower ones and the low velocity bodies obviously exist in the lower part of upper crust. Moreover, there are two deep crustal fault zones which stretch to the Moho discontinuity, are closely related with the seismicity in the Yanhuai area.
基金funded by China’s National Natural Science Foundation (Nos. 42125401 and 42004031)the Hefei Key Technology Research and Development Project (No. J2020J06)
文摘Chao Lake is a Geoheritage site on the active Tan-Lu Fault between the Yangtze craton,the North China craton,and the Dabie orogenic belt in the southeast.This segment of the fault is not well constrained at depth partly due to the overprinting of the fault zone by intrusive materials and its relatively low seismic activity and sparse seismic station coverage.This study took advantage of a dense seismic array deployed around Chao Lake to delineate the P-wave velocity variations in the crust and uppermost mantle using teleseismic earthquake arrival time tomography.The station-pair double-difference with waveform crosscorrelation technique was employed.We used a multiscale resolution 3-D initial model derived from the combination of highresolution 3-D v S models within the region of interest to account for the lateral heterogeneity in the upper crust.The results revealed that the velocity of the upper crust is segmented with structures trending in the direction of the strike of the fault.Sedimentary basins are delineated on both sides of the fault with slow velocities,while the fault zone is characterized by high velocity in the crust and uppermost mantle.The high-velocity structure in the fault zone shows characteristics of magma intrusion that may be connected to the Mesozoic magmatism in and around the Middle and Lower Yangtze River Metallogenic Belt(MLYMB),implying that the Tan-Lu fault might have formed a channel for magma intrusion.Magmatic material in Chao Lake is likely connected to the partial melting,assimilation,storage,and homogenization of the uppermost mantle and the lower crustal rocks.The intrusions,however,seem to have suffered severe regional extension along the Tan-Lu fault driven by the eastward Paleo-Pacific plate subduction,thereby losing its deep trail due to extensional erosion.
文摘Two seismic refraction profiles which are perpendicular to each other, running through Xingtai earthquake region,reveal the anomalous variations of crust-mantle velocity structure and deep tectonics. Pg wave attenuatesrapidly with distance in the earthquake region. A group of strong reflections from a depth of 21. 0 km can be identified along the section from Longyao to the piedmont of Taihang Mountain, but P. waves characterized generally by strong amplitude are not obvious. Under the earthquake region and its western neighboring region, thecrustal velocity structure features high and low velocities changed alternatively. From North China plain toShanxi plateau, the velocity at the top of the upper mantle decreases progressively, while crustal thickness increases by 11 km. Moho uplifts locally in the earthquake region. The crustal fault stretching deeply to Moho andthe discontinuous sections of Moho in the earthquake region are supposed to be the channels and zones for magmatic intrusion. The uplifting of upper mantle and magmatic intrusion are responsible for the formation ofanomalous crust-mantle structures and extending basins, and for the occurrence of Xingtai earthquake as well.
文摘A method of three dimensional (3-D) model parameterization is presented that makes forward and inverse problems become easy. The velocity and interface structure of crust and upper mantle are described by a set of highly smoothed functions. Shooting ray tracing method is chosen to calculate the ray paths for both forward and inverse problems. The partial derivatives of traveltime with respect to parameters of the model grids are calculated analytically while rays are being traced. Because velocity and interface functions have second-order continuous partial derivatives, the geometrical shadow zones at the surface caused by scattering and focusing of ray paths can be prevented. After ray tracing, an equation consisting of matrix and vectors for inverse problem is obtained. We use singular value decomposition method with damped factor to solve the equation. A synthetic data set which consists of several in-line profiles is used to test the methods. The results show that the methods are robust. Compared with the two dimensional method, the 3-D inversion method can give the right position of interfaces and the velocity structure when the crustal model is complicated.
文摘Another comparative interpretation was conducted with respect to the data from 5 DSS profiles in the central and southern parts of Shanxi, leading to the conclusion that in Linxian, Linfen and Xingtai earthquake regions, through which the five profiles pass, there exist anomalous crust mantle structure and abyssal crustal faults extending to Moho, all being regarded as the deep indications for earthquake occurrence.
基金funded by grants from the Key Project of the National Natural Science Foundation of China(No.41630320)the National Key Research and Development Program of China(No.2016YFC0600200)the Hefei Postdoctoral Science Foundation。
文摘In this study,we compiled and analyzed 69310 P-wave travel-time data from 6639 earthquake events.These events(M≥2.0)occurred from 1980 s to June 2019 and were recorded at 319 seismic stations(Chinese Earthquake Networks Center)in the study area.We adopted the double-difference seismic tomographic method(tomo DD)to invert the 3-D P-wave velocity structure and constrain the crust-upper mantle architecture of the Middle and Lower Reaches of the Yangtze River Metallogenic Belt(MLYB).A 1-D initial model extracted from wide-angle seismic profiles was used in the seismic tomography,which greatly reduced the inversion residual.Our results indicate that reliable velocity structure of th e uppermost mantle can be obtained when Pn is involved in the tomography.Our results show that:(1)the pattern of the uppermost mantle velocity structure corresponds well with the geological partitioning:a nearly E-W-trending low-velocity zone is present beneath the Dabie Orogen,in contrast to the mainly NE-trending low-velocity anomalies beneath the Jiangnan Orogen.They suggest the presence of thickened lower crust beneath the orogens in the study area.In contrast,the Yangtze and Cathaysia blocks are characterized by relatively high-velocity anomalies;(2)both the ultra-high-pressure(UHP)metamorphic rocks in the Dabie Orogen and the low-pressure metamorphic rocks in the Zhangbaling dome are characterized by high-velocity anomalies.The upper crust in the Dabie Orogen is characterized by a low-velocity belt,sandwiched between two high velocity zones in a horizontal direction,with discontinuous low-velocity layers in the middle crust.The keel of the Dabie Orogen is mainly preserved beneath its northern section.We infer that the lower crustal delamination may have mainly occurred in the southern Dabie Orogen,which caused the mantle upwelling responsible for the formation of the granitic magmas emplaced in the middle crust as the low-velocity layers observed there.Continuous deep-level compression likely squeezed the granitic magma upward to intrude the upper crustal UHP metamorphic rocks,forming the'sandwich'velocity structure there;(3)high-velocity updoming is widespread in the crust-mantle transition zone beneath the MLYB.From the Anqing-Guichi ore field northeastward to the Luzong,Tongling,Ningwu and Ningzhen orefields,high-velocity anomalies in the crust-mantle transition zone increase rapidly in size and are widely distributed.The updoming also exists in the crust-mantle transition zone beneath the Jiurui and Edongnan orefields,but the high-velocity anomalies are mainly stellate distributed.The updoming high-velocity zone beneath the MLYB generally extends from the crust-mantle transition zone to the middle crust,different from the velocity structure in the upper crust.The upper crust beneath the Early Cretaceous extension-related Luzong and Ningwu volcanic basins is characterized by high velocity zones,in contrast to the low velocity anomalies beneath the Late Jurassic to Early Cretaceous compression-related Tongling ore field.The MLYB may have undergone a compressive-to-extensional transition during the Yanshanian(Jurassic-Cretaceous)period,during which extensive magmatism occurred.The near mantle-crustal boundary updoming was likely caused by asthenospheric underplating at the base of the lower crust.The magmas may have ascended through major crustal faults,undergoing AFC(assimilation and fractional crystallization)processes,became emplaced in the fault-bounded basins or Paleozoic sequences,eventually forming the many Cu-Fe polymetallic deposits there.
文摘Using recent data of geoscience transaction in Northeast China, the author analyses and studies the crust-upper mantle structure feature of the North Tanlu fault zone. The result shows the crust-mantle structure are obvious difference at both sides of the North Tanlu fault zone. The fault activity and segmentation are closely related with abruptly change zone of the crust-upper mantle structure. There is a clear mirror image relationship between the big geomorphic shape and asthenosphere undulate, the former restricts tectonic stability and tectonic style of dif- ferent crustal units. The significantly strengthening seismicity of north set and south set in the North Tanlu fault zone just correspond to the low-velocity and high conductivity layer of crust-upper mantle. In the North Tanlu fault zone, the main controlling structure of the mid-strong seismic generally consists of the active fault sectors, whose crust-mantle structure is more complicated in rigidity massif.
基金State Key Basic Research Development and Programming Project (G1998040702) and State Natural Science Foundation of China (49774230).
文摘Observational data from some of the 10-odd deep seismic sounding profiles in Bohai Bay and its adjacent areas were processed with the methods of two-dimensional ray tracing, travel-time fitting and synthetic seismogram. The crust and upper-mantle velocity structure model in this area was built. The results show that the crust and upper mantle structures present obvious lateral and vertical inhomogeneity. The upper mantle uplifts near Yongqing of northeast Jizhong depression, in Bohai Bay of Huanghua depression and near Kenli of Jiyang depression, where crustal depths are about 31 km, 28 km and 29 km, respectively. According to the dynamic and kinetic characteristics of seismic waves as well as the seismic interfaces and velocity contour undulation in the 2-D velocity structure model, three deep crustal fault zones are inferred in the area. Low velocity (5.90~6.10 km/s) layers (bodies) exist on one or two sides of these deep crustal fault zones.
文摘The fine structure of crust mantle transition zone in Yanqing Hailai(Yan Huai basin) basin has been analyzed and discussed by using the data of Yanqing Hailai deep seismic reflection profile and Beijing Huailai Fengzhen deep seismic sounding profile obtained respectively in 1992 and in 1993. The primary model is established based on CDP stacking profile. The phases of seismic refraction waves and wide angle reflection waves are analyzed, travel time inversion is carried out and 2 D ray tracing is computed. Synthetic seismograms are completed by using re flectivity method for waveform fitting of phases P M and P M′, they are reflection waves from both the upper and the lower boundaries of the crust mantle transition zone in this basin. The results show that the P M′ reflection waves are stronger at some points and come from the lower boundary of Moho discontinuity. It is confirmed and inter preted that the Moho discontinuity in Yanqing Hailai basin consists of a group of thin layers with alternatively higher and lower velocities.
文摘In this paper, the typical velocity structures and average velocities of the crust in six different active tectonic block regions are presented on the basis of previous studies and their tectonic implications are discussed. The results show that different tectonic units have different features of crustal velocity structures. In general, there are low velocity distributions in the crust in regions with strong tectonic activities, and the scales of low velocity distributions are related to the tectonic activities. The average velocities are relatively low in such regions. This reflects strong crustal deformation and the variations of states of matter in the crust resulting from strong tectonic movements. These regions are also seismically active zones frequented by strong earthquakes. Therefore, studying crustal velocity structures of these regions is of great importance to understanding crustal geodynamic process and seismogenic tectonic background.
文摘The average upper mantle P wave velocity structure and lateral heterogeneity in the northern part of China and Mongolia are investigated by waveform inversion of broadband body waveform data recorded by CDSN and digital stations around China. The average model has a low P wave velocity lid (about 7.8~8.0 km·s -1 ) with thickness about 60 km, and two discontinuities with velocity jumps of 0.29 km·s -1 and 0.55 km·s -1 at depth of 410 km and 665 km respectively. In the Jungger basin, the P wave velocity of uppermost mantle is about 7.7 km·s -1 . The lid thickness (90~100 km) and velocity gradient (average gradient is greater than 0.005 5/s) are large. At the depth of 140 km the P wave velocity reaches to 8.2 km·s -1 . Near in Baikal, the lid is about 30 km thick with average P wave velocity of 8.00~8.05 km·s -1 .
基金State Natural Science Foundation of China (49734150).
文摘3-D velocity structure of P wave in the upper mantle beneath southwestern China and its adjacent areas (10°N [similar to] 36°N, 70°E [similar to] 110°E) down to the depth of 400 km has been studied by using 80 974 P-wave first arrival times recorded at 165 stations from 7 053 events both within the studying areas, selected from the ISC bulletin and the Bulletin of China and NEIC fundamental seismic network. With a resolution of grid spacing of 2°×2°, the velocity heterogeneity on the horizontal profile is obvious though it attenuates with the depth increasing. On the vertical profiles of velocity along the latitude of 16°N and 24°N, the collision and extrusion of India plate to Eurasia plate is displayed, and a remarkable velocity difference between India plate and Eurasia plate is shown. In the vertical profile along the longitude of 90°E, the subducting of India plate northward beneath Eurasia plate (Tibet plateau) is also obvious. On the horizontal profile at the depth of 90 km, a slow velocity stripe from Myitkyina, Myanmar to Donghai, Vietnam seems to be related to Honghe fault belt. An illustration method of describing the resolution more directly and exactly has been proposed and utilized in this paper.
文摘Based on the results of two dimension velo city structure, 1∶100 000 aeromagnetic anomaly, 1∶200 000 bouguer gravity anom aly and seismic anisotropy of Jiaodong and neighboring region in Shandong, China , the information of geophysical field was divided into two parts: deep and sh allow focus fields. And then, the information of two different fields was c ombined with that of deep seated geology and ore deposit features. The syntheti c result was adopted to analyze three dimension structure, to probe into crust mantle coupling effects of mineralization and dynamics of ore formation system .
基金Chinese Joint Seismological Science Foundation (9507413) the Climbing Plan Project (95-S-05-01) from the State Department of Science and Technology China.
文摘The three dimensional S wave velocity structure of the crust and upper mantle of Chinese mainland and its neighboring region is obtained by genetic algorithm of surface wave tomography, with smoothness constraint, based on 25 wave group velocities for the periods from 10 s to 92 s, measured from long period Rayleigh waves recorded by 11 stations of CDSN and 12 digital seismometers surrounding China. The S wave velocity image is shown on two latitudinal sections along 30°N and 38°N, two longitudinal sections along 90°E and 120°E, and four horizontal slices at the different depths.
基金The Scientific Research Fund of the Second Institute of OceanographyMNR under contract No.QNYC1801+3 种基金the National Natural Science Foundation of China under contract Nos 91858214,41776053,42025601,42076047,41890811 and 42006072the National Program on Global Change and Air-Sea InteractionMinistry of Natural Resources under contract No.GASI-02-PACDWZP02the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)under contract No.311020018。
文摘As an interoceanic arc,the Kyushu-Palau Ridge(KPR)is an exceptional place to study the subduction process and related magmatism through its interior velocity structure.However,the crustal structure and its nature of the KPR,especially the southern part with limited seismic data,are still in mystery.In order to unveil the crustal structure of the southern part of the KPR,this study uses deep reflection/refraction seismic data recorded by 24 ocean bottom seismometers to reconstruct a detailed P-wave velocity model along the ridge.Results show strong alongridge variations either on the crustal velocity or the thickness of the KPR.P-wave velocity model is featured with(1)a crustal thickness between 6–12 km,with velocity increases from 4.0 km/s to 7.0 km/s from top to bottom;(2)high gradient(~1 s^(-1))in the upper crust but low one(<0.2 s^(-1))in the lower crust;(3)a slow mantle velocity between 7.2 km/s and 7.6 km/s in the uppermost mantle;and(4)inhomogenous velocity anomalies in the lower crust beneath seamounts.By comparing with the mature arc in the Izu-Bonin-Mariana arc in the east,this study suggests the southern part of KPR is a thicken oceanic crust rather than a typical arc crust.The origin of low velocities in the lower crust and upper mantle may be related with crustal differentiation,which implies advanced crustal evolution from normal oceanic crust to partly thicken oceanic crust.High velocities in the lower crust are related to the difference in magmatism.
基金This study is supported by the Visiting Scholar Foundation of Key Lab in University of Chinathe Ministry of Education and the
文摘Magnetic structure of the continental crust is one of the important geophysical aspects of continental lithosphere. This paper reviews the achievements in the research into the magnetic structure and its significance for crustal tectonics, composition, metamorphic facies, crust mantle interaction and magnetization of deep crust. Further studies are suggested according to the basic principles of rock and mineral magnetism in terms of petrology, geochemistry and structural geology. Emphasis is placed on new geological ideas and synthetic studies of the relationship between deep geological processes and interpretation of gravity, magnetic, electrical and seismic data. The relationships between magnetic, density, electricity, velocity, geothermal structures and deep geodynamic processes are taken as a system for the research into the deep geology.
基金This paper is supported by the National Natural Science Foundation of China (No.40434010)the Focused Subject Program of Beijing (No. XK104910589).
文摘Since the Xingtai (邢台) earthquake in 1966, China Earthquake Administration has carried out a survey campaign along more than thirty deep seismic sounding (DSS) profiles altogether about twenty thousand kilometers long in North China to study the velocity structure of the crust and the upper mantle in this region, and has obtained a great number of research findings. However, these researches have not provided a 3D velocity structure model of the crust of North China and cannot provide seismic evidence for the study of the deep tectonic characteristics of the crust of the whole region. Hence, based on the information from the published data of the DSS profiles, we have chosen 14 profiles to obtain a 3D velocity structure model of North China using the vectorization function of the GIS software (Arc/Info) and the Kriging data gridding method. With this velocity structure model, we have drawn the following conclusions: (1) The P-wave velocity of the uppermost crust of North China changes dramatically, exhibiting a complicated velocity structure in plane view. It can be divided into three velocity zones mainly trending towards north-west. In the research area, the lowest-velocity zones lie in the Haihe (海河) plain and Bohai (渤海) Bay. Although the geological structure of the sedimentary overburden in the study area is somewhat inherited by the upper crust, there are still several differences between them. (2) Generally, the P-wave velocity of the crust increases with depth in the study area, but there still exists local velocity reversion. In the east, low-velocity anomalies of the Haihe plain gradually disappear with increasing depth, and the Shanxi (山西) graben in the west is mainly characterized by relatively low velocity anomalies. Bounded by the Taihang (太行) Mountains, the eastern and western parts differ in structural trend of stratum above the crystalline basement. The structural trend of the Huanghuaihai (黄淮海) block in the east is mainly north-east, while that of the Shanxi block and the eastern edge of the Ordos block is mainly north-west. (3) According to the morphological features of Moho, the crust of the study area can be divided into six blocks. In the Shanxi block, Moho apppears like a nearly south-north trending depression belt with a large crustal thickness. In the southern edge of the Inner Mongolia block and the south of the Yanshan (燕山) block,the Moho exhibits a feature of fold belt, trending nearly towards east-west. In the eastern edge of the Ordos block, the structure of Moho is relatively complex, presenting a pattern of fold trending nearly towards north-west with alternating convexes and concaves. Beneath the Huanghuaihai block, the middle and northern parts of the North China rift zone, the Moho is the shallowest in the entire region, with alternating uplifts and depressions in its shape. For the anteclise zone in the west of Shandong (山东) Province, the Moho is discontinuous for the fault depression extending in the north-west direction along Zaozhuang (枣庄) -Qufu (曲阜).
基金This project was sponsored by the Joint Earthquake Science Foundation(90436).Contribution No.93A0107, Institute of Geophysics,SSB, China.
文摘In this paper the authors have discussed the results of investigation of fine velocity structure in the basement layer of the Simao-Zhongdian DSS profile in western Yunnan region.The depth of upper Pz interface of the basement layer is about 0-3.5 km,and the depth of the lower P1 interface is 11.0-17.0 km.The velocity of the basement layer on the southern side of the Jinhe-Erhai deep fault is 5.70-6.30 km/s,and has increased to 6.30-6.50 km/s on the northern side.Their transitional zone is situated near Jianchuan County.Along the profile some localities,where the faults cut across the lateral variation of Pz interface velocity,are quite obvious in addition to the variation in depth.The velocity isopleths are relatively sparse in the southern region of JYQ S.P.(shot - point),near the DC S.P.,and in the south ZT S.P.The magma has apparently risen up along the deep faults to the upper crust in these localities,forming a large intrusive rock zone in the basement layer.In Jinggu region the basaltic magma
基金This project was sponsored by China Seismological Bureau. Contribution No.RCEG98007, Research Center of Exploration Geophysics, CSB, Zhengzhou, China.
文摘1-D and 2-D calculation and interpretation are carried out with the DSS data from the western section of Heze-Changzhi profile and the southern section of Zhengzhou-Jinan profile. 2-D velocity structure is determined in Tangyin graben and its adjacent area. The result shows that velocity structure of the crust and upper mantle is obviously different in vertical and lateral directions. Crustal thickness varies apparently in this area, and there are local low velocity blocks in the interior crust. The swelling M-discontinuity corresponds to Tangyin graben and Moho depth at the highest swelling position is 31 km. Toward the east, its depth gradually increases to 32 km in Xunxian swelling; toward the west, M-discontinuity becomes a steep zone at the piedmont uplift of Taihang Mountain and reaches 40 km at depth near Changzhi. Through analyzing the relationship between historical earthquakes and deep structure in North China, we infer that seismic risk exists in Tangyin graben and its adjacent area.