Varying degree of velocity anomalies has been appeared in Shijiutuo uplift in Bohai Sea,which is mainly demonstrated in the inconsistent between seismic interpretation and the actual drilling depth.In this paper, QHD3...Varying degree of velocity anomalies has been appeared in Shijiutuo uplift in Bohai Sea,which is mainly demonstrated in the inconsistent between seismic interpretation and the actual drilling depth.In this paper, QHD33-1S area is taken as the example.First of all,the main reason that causes the velocity anomaly phenomena is the effect of sand-formation ratio by forward model analysis,and then technical approaches to improve the accuracy of the velocity field and the degree of understanding of anomalies are further explored,resulting in more precise determination of horizontal variation trend of the velocity in QHD33-1S area.Consequences of actual applications indicate that through the accurate analysis of the velocity anomaly,we can not only realize the fine description of low-amplitude structure,but also the effective prediction of the hydrocarbon-bearing properties of the reservoir.Meanwhile,the results also have a certain significance for the other low-amplitude structures in Bohai Sea.展开更多
The ORB-SLAM2 based on the constant velocity model is difficult to determine the search window of the reprojection of map points when the objects are in variable velocity motion,which leads to a false matching,with an...The ORB-SLAM2 based on the constant velocity model is difficult to determine the search window of the reprojection of map points when the objects are in variable velocity motion,which leads to a false matching,with an inaccurate pose estimation or failed tracking.To address the challenge above,a new method of feature point matching is proposed in this paper,which combines the variable velocity model with the reverse optical flow method.First,the constant velocity model is extended to a new variable velocity model,and the expanded variable velocity model is used to provide the initial pixel shifting for the reverse optical flow method.Then the search range of feature points is accurately determined according to the results of the reverse optical flow method,thereby improving the accuracy and reliability of feature matching,with strengthened interframe tracking effects.Finally,we tested on TUM data set based on the RGB-D camera.Experimental results show that this method can reduce the probability of tracking failure and improve localization accuracy on SLAM(Simultaneous Localization and Mapping)systems.Compared with the traditional ORB-SLAM2,the test error of this method on each sequence in the TUM data set is significantly reduced,and the root mean square error is only 63.8%of the original system under the optimal condition.展开更多
Upper Circumpolar Deep Water(UCDW)and North Pacifi c Deep Water(NPDW)coexist in the upper deep layer(i.e.,with a 1.2-2.0-℃potential temperature range and a 2000-4100-dbar pressure range)of the Eastern Philippine Sea....Upper Circumpolar Deep Water(UCDW)and North Pacifi c Deep Water(NPDW)coexist in the upper deep layer(i.e.,with a 1.2-2.0-℃potential temperature range and a 2000-4100-dbar pressure range)of the Eastern Philippine Sea.They have similar properties in potential temperature and salinity,while have a signifi cant diff erence in dissolved silicate.Based on the repeated observations along a 137°E transect from the World Ocean Database(WOD18),this study revealed the interannual variability of dissolved silicate in the upper deep layer of the Eastern Philippine Sea.Dissolved silicate increased in 1995,1996,2005,2006,and 2007,and decreased in 1997,2000,2001,2002,and 2004.Composition analysis showed that the large diff erence between positive and negative dissolved silicate anomalies occurred mainly at~15°N and north of 25°N,with the concentration reaching 4.25μmol/g.Further analysis indicated that the interannual dissolved silicate variability was related to the zonal current variation in the upper deep layer.The relatively strong(weak)westward current transport increased(decreased)NPDW to the Eastern Philippine Sea,thereby resulting in increased(decreased)dissolved silicate.展开更多
文摘Varying degree of velocity anomalies has been appeared in Shijiutuo uplift in Bohai Sea,which is mainly demonstrated in the inconsistent between seismic interpretation and the actual drilling depth.In this paper, QHD33-1S area is taken as the example.First of all,the main reason that causes the velocity anomaly phenomena is the effect of sand-formation ratio by forward model analysis,and then technical approaches to improve the accuracy of the velocity field and the degree of understanding of anomalies are further explored,resulting in more precise determination of horizontal variation trend of the velocity in QHD33-1S area.Consequences of actual applications indicate that through the accurate analysis of the velocity anomaly,we can not only realize the fine description of low-amplitude structure,but also the effective prediction of the hydrocarbon-bearing properties of the reservoir.Meanwhile,the results also have a certain significance for the other low-amplitude structures in Bohai Sea.
基金This work was supported by The National Natural Science Foundation of China under Grant No.61304205 and NO.61502240The Natural Science Foundation of Jiangsu Province under Grant No.BK20191401 and No.BK20201136Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grant No.SJCX21_0364 and No.SJCX21_0363.
文摘The ORB-SLAM2 based on the constant velocity model is difficult to determine the search window of the reprojection of map points when the objects are in variable velocity motion,which leads to a false matching,with an inaccurate pose estimation or failed tracking.To address the challenge above,a new method of feature point matching is proposed in this paper,which combines the variable velocity model with the reverse optical flow method.First,the constant velocity model is extended to a new variable velocity model,and the expanded variable velocity model is used to provide the initial pixel shifting for the reverse optical flow method.Then the search range of feature points is accurately determined according to the results of the reverse optical flow method,thereby improving the accuracy and reliability of feature matching,with strengthened interframe tracking effects.Finally,we tested on TUM data set based on the RGB-D camera.Experimental results show that this method can reduce the probability of tracking failure and improve localization accuracy on SLAM(Simultaneous Localization and Mapping)systems.Compared with the traditional ORB-SLAM2,the test error of this method on each sequence in the TUM data set is significantly reduced,and the root mean square error is only 63.8%of the original system under the optimal condition.
基金Supported by the National Key Research and Development Program of China(No.2018YFC0309800)the National Natural Science Foundation of China(Nos.42176021,91858203)+1 种基金the Open Project Program of State Key Laboratory of Tropical Oceanography(No.LTOZZ2001)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0304)。
文摘Upper Circumpolar Deep Water(UCDW)and North Pacifi c Deep Water(NPDW)coexist in the upper deep layer(i.e.,with a 1.2-2.0-℃potential temperature range and a 2000-4100-dbar pressure range)of the Eastern Philippine Sea.They have similar properties in potential temperature and salinity,while have a signifi cant diff erence in dissolved silicate.Based on the repeated observations along a 137°E transect from the World Ocean Database(WOD18),this study revealed the interannual variability of dissolved silicate in the upper deep layer of the Eastern Philippine Sea.Dissolved silicate increased in 1995,1996,2005,2006,and 2007,and decreased in 1997,2000,2001,2002,and 2004.Composition analysis showed that the large diff erence between positive and negative dissolved silicate anomalies occurred mainly at~15°N and north of 25°N,with the concentration reaching 4.25μmol/g.Further analysis indicated that the interannual dissolved silicate variability was related to the zonal current variation in the upper deep layer.The relatively strong(weak)westward current transport increased(decreased)NPDW to the Eastern Philippine Sea,thereby resulting in increased(decreased)dissolved silicate.