Bactericidal/permeability-increasing protein (BPI) and LPS-binding protein (LBP) play an important role in host defence. Current evidence shows that BPI/LBP may be widely existed in different cells and tissue type...Bactericidal/permeability-increasing protein (BPI) and LPS-binding protein (LBP) play an important role in host defence. Current evidence shows that BPI/LBP may be widely existed in different cells and tissue types of animals. A full-length cDNA clone encoding a BPI/LBP homologue (dBPI), 1757 bp in size, was characterized in venom gland of the hundred-pace snake Deinagkistrodon acutus. Its deduced amino acid sequence of 417 residues had 13.8% - 21.5% identity to BPI like 1 (BPIL1) and BPI like 3 (BPIL3) of other animals. Conserved cysteine residues which are involved in disulfide bond formation between the final strand of the N-terminal beta sheet and the long alpha helix of BPI are identified as Cys146-Cys183 of dBPI. Phylogenetic tree analysis showed that the BPI/LBP homologues formed five large clusters and dBPI was in a large cluster including BPIL1 and BPIL3. dBPI mRNA shows a tissue specific expression in venom gland. This is the first study to identify the cDNA encoding BPI/LBP homologues from reptiles [ Current Zoology 55 (5) : 376 - 382, 2009].展开更多
The Tityus serrulatus scorpion is considered the most dangerous scorpion in Brazil and is responsible for several cases of human envenomation annually. In this study, we performed transcriptome profiling of the T. ser...The Tityus serrulatus scorpion is considered the most dangerous scorpion in Brazil and is responsible for several cases of human envenomation annually. In this study, we performed transcriptome profiling of the T. serrulatus venom gland. In addition to transcripts with housekeeping functions, such as those related to protein synthesis, energy supply and structural processes, transcripts from thirty-five families of venom peptides or proteins were identified. These transcripts included three new complete sequences of toxins and more than a dozen putative venom gland proteins/peptides. The venom gland transcriptome profile was verified by comparison with the previously determined proteomic profile. In conclusion, this transcriptome data provides novel insights into the putative mechanisms underlying the venomous character of T. serrulatus. The collected data of scorpion transcripts and proteins/peptides described herein may be an important resource for identifying candidate targets of molecular therapies and preventative measures.展开更多
Females of the solitary parasitoid Diadromus collaris (Insecta: Hymenoptera: Ichneumonidae) lay eggs in the pupae of Plutella xylostella (Lepidoptera: Plutellidae), and the venom is synchronously injected into ...Females of the solitary parasitoid Diadromus collaris (Insecta: Hymenoptera: Ichneumonidae) lay eggs in the pupae of Plutella xylostella (Lepidoptera: Plutellidae), and the venom is synchronously injected into hosts. The venom apparatus consists of two glandular tubules terminating in a common reservoir, A ductule connects the reservoir with the sting apparatus, by which the reservoir content enters the latter. Secretory units line the two glandular tubules. All secretory cells belong to dermal gland type Ⅲ. Dermal gland cells in glandular tubules are more abundant and developed than those in the reservoir. There are extensive rough endoplasmic reticulum and electrondense vesicles, and the microvilli are well developed. By the cuticle-lined central funnel secretion products of secretory units reach the reservoir. Moreover, the secretory apparatus undergoes age-related changes. The secretory units in the venom gland are better developed and more vigorous 7 days after eclosion than those 1 day after eclosion; autolytic processes occur 15 days after eclosion, and the tissue of the reservoir is more prostrate 15 day after eclosion than those 1 day after eclosion. The ovipostion peak of this parasitoid, about 3-7 days after eclosion, corresponds with the period when the venom gland is highly developed in the life span of the wasp.展开更多
基金funded by a grant from the local government of Zhejiang Province for the Specially Supported Discipline of Zoology
文摘Bactericidal/permeability-increasing protein (BPI) and LPS-binding protein (LBP) play an important role in host defence. Current evidence shows that BPI/LBP may be widely existed in different cells and tissue types of animals. A full-length cDNA clone encoding a BPI/LBP homologue (dBPI), 1757 bp in size, was characterized in venom gland of the hundred-pace snake Deinagkistrodon acutus. Its deduced amino acid sequence of 417 residues had 13.8% - 21.5% identity to BPI like 1 (BPIL1) and BPI like 3 (BPIL3) of other animals. Conserved cysteine residues which are involved in disulfide bond formation between the final strand of the N-terminal beta sheet and the long alpha helix of BPI are identified as Cys146-Cys183 of dBPI. Phylogenetic tree analysis showed that the BPI/LBP homologues formed five large clusters and dBPI was in a large cluster including BPIL1 and BPIL3. dBPI mRNA shows a tissue specific expression in venom gland. This is the first study to identify the cDNA encoding BPI/LBP homologues from reptiles [ Current Zoology 55 (5) : 376 - 382, 2009].
文摘The Tityus serrulatus scorpion is considered the most dangerous scorpion in Brazil and is responsible for several cases of human envenomation annually. In this study, we performed transcriptome profiling of the T. serrulatus venom gland. In addition to transcripts with housekeeping functions, such as those related to protein synthesis, energy supply and structural processes, transcripts from thirty-five families of venom peptides or proteins were identified. These transcripts included three new complete sequences of toxins and more than a dozen putative venom gland proteins/peptides. The venom gland transcriptome profile was verified by comparison with the previously determined proteomic profile. In conclusion, this transcriptome data provides novel insights into the putative mechanisms underlying the venomous character of T. serrulatus. The collected data of scorpion transcripts and proteins/peptides described herein may be an important resource for identifying candidate targets of molecular therapies and preventative measures.
基金We are grateful to Professor Hong Jian and Mrs Yuexian Fang (Zhejiang University, Hangzhou) for their help with transmission electron microscopy. Funding for this study was provided jointly by National Natural Science Foundation of China (NSFC number: 30370959) and Program for New Century Excellent Talents in University (NCET-04- 0521).
文摘Females of the solitary parasitoid Diadromus collaris (Insecta: Hymenoptera: Ichneumonidae) lay eggs in the pupae of Plutella xylostella (Lepidoptera: Plutellidae), and the venom is synchronously injected into hosts. The venom apparatus consists of two glandular tubules terminating in a common reservoir, A ductule connects the reservoir with the sting apparatus, by which the reservoir content enters the latter. Secretory units line the two glandular tubules. All secretory cells belong to dermal gland type Ⅲ. Dermal gland cells in glandular tubules are more abundant and developed than those in the reservoir. There are extensive rough endoplasmic reticulum and electrondense vesicles, and the microvilli are well developed. By the cuticle-lined central funnel secretion products of secretory units reach the reservoir. Moreover, the secretory apparatus undergoes age-related changes. The secretory units in the venom gland are better developed and more vigorous 7 days after eclosion than those 1 day after eclosion; autolytic processes occur 15 days after eclosion, and the tissue of the reservoir is more prostrate 15 day after eclosion than those 1 day after eclosion. The ovipostion peak of this parasitoid, about 3-7 days after eclosion, corresponds with the period when the venom gland is highly developed in the life span of the wasp.