期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Deep-large faults controlling on the distribution of the venting gas hydrate system in the middle of the Qiongdongnan Basin, South China Sea
1
作者 Jin-feng Ren Hai-jun Qiu +6 位作者 Zeng-gui Kuang Ting-wei Li Yu-lin He Meng-jie Xu Xiao-xue Wang Hong-fei Lai Jin Liang 《China Geology》 CAS CSCD 2024年第1期36-50,共15页
Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migra... Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates. 展开更多
关键词 venting gas hydrates Deep-large faults gas chimney gas-escape pipes High-resolution 3D seismic Logging while drilling Qiongdongnan Basin South China Sea
下载PDF
Effect of safety valve types on the gas venting behavior and thermal runaway hazard severity of large-format prismatic lithium iron phosphate batteries
2
作者 Zhuangzhuang Jia Yuanyuan Min +5 位作者 Peng Qin Wenxin Mei Xiangdong Meng Kaiqiang Jin Jinhua Sun Qingsong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期195-207,I0006,共14页
The safety valve is an important component to ensure the safe operation of lithium-ion batteries(LIBs).However,the effect of safety valve type on the thermal runaway(TR)and gas venting behavior of LIBs,as well as the ... The safety valve is an important component to ensure the safe operation of lithium-ion batteries(LIBs).However,the effect of safety valve type on the thermal runaway(TR)and gas venting behavior of LIBs,as well as the TR hazard severity of LIBs,are not known.In this paper,the TR and gas venting behavior of three 100 A h lithium iron phosphate(LFP)batteries with different safety valves are investigated under overheating.Compared to previous studies,the main contribution of this work is in studying and evaluating the effect of gas venting behavior and TR hazard severity of LFP batteries with three safety valve types.Two significant results are obtained:(Ⅰ)the safety valve type dominates over gas venting pressure of battery during safety venting,the maximum gas venting pressure of LFP batteries with a round safety valve is 3320 Pa,which is one order of magnitude higher than other batteries with oval or cavity safety valve;(Ⅱ)the LFP battery with oval safety valve has the lowest TR hazard as shown by the TR hazard assessment model based on gray-fuzzy analytic hierarchy process.This study reveals the effect of safety valve type on TR and gas venting,providing a clear direction for the safety valve design. 展开更多
关键词 Lithium iron phosphate battery Safety valve Thermal runaway gas venting behavior Thermal runaway hazard severity Gray-fuzzy analytic hierarchy process
下载PDF
Investigation of a semi-empirical load model of natural gas explosion in vented spaces
3
作者 Shigang Yang Jiongwei Cai +3 位作者 Ya Yang Qin Fang Qi Bao Senpei Wang 《Journal of Safety Science and Resilience》 CSCD 2021年第3期157-171,共15页
Due to the influence of many factors,the overpressure-time history load model of vented gas explosions is difficult to describe and is not conducive to further structural design.Based on vented gas explosion test data... Due to the influence of many factors,the overpressure-time history load model of vented gas explosions is difficult to describe and is not conducive to further structural design.Based on vented gas explosion test data,this paper obtains three typical overpressure-time history curves and puts forward a new semi-empirical model-double hump model that considers gas concentration and venting pressure,and gives a formula for peak pressure and overpressure-time history model.The scientificity of the model is then verified by the total impulse in the load.The model is able directly reflect the load characteristics,provide reference for calculating key parameters of a vented gas explosion and provide information on the structural response under the load.The model thereby has the potential to help reduce the impact of gas explosion disasters. 展开更多
关键词 vented gas explosion Load model Overpressure-time history gas concentration venting pressure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部