期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Role of Atmospheric Boundary Layer(ABL)Height and Ventilation Coefficient on Urban Air Quality--A study based on Observations and NWP Model
1
作者 Aditi Singh 《Journal of Atmospheric Science Research》 2019年第3期11-16,共6页
Air pollution is an issue of great concern in any urban region due to its serious health implications.The capital of India,New Delhi continues to be in the list of most polluted cities since 2014.The air quality of an... Air pollution is an issue of great concern in any urban region due to its serious health implications.The capital of India,New Delhi continues to be in the list of most polluted cities since 2014.The air quality of any region depends on the ability of dispersion of air pollutants.The height or depth of the atmospheric boundary layer(ABL)is one measure of dispersion of air pollutants.Ventilation coefficient is another crucial parameter in determining the air quality of any region.Both of these parameters are obtained over Delhi from the operational global numerical weather prediction(NWP)model of National Centre for Medium Range Weather forecasting(NCMRWF)known as NCMRWF Unified Model(NCUM).The height of ABL over Delhi,is also obtained from radiosonde observations using the parcel method.A good agreement is found between the observed and predicted values of ABL height.The maximum height of ABL is obtained during summer season and minimum is obtained in winter season.High values of air pollutants are found when the values of ABL height and ventilation coefficient are low. 展开更多
关键词 ABL ventilation coefficient Parcel Method Air Quality Index NWP model
下载PDF
Numerical simulation to evaluate gas diffusion of turbulent flow in mine ventilation system 被引量:11
2
作者 Arif Widiatmojo Kyuro Sasaki +4 位作者 Nuhindro Priagung Widodo Yuichi Sugai Johannes Sinaga Haris Yusuf 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期349-355,共7页
Tracer gas technique is a method to analyze the airflow path, measure the airflow quantity, and detect any recirculation or leakages in underground mine. In addition, it is also possible to evaluate the axial gas diff... Tracer gas technique is a method to analyze the airflow path, measure the airflow quantity, and detect any recirculation or leakages in underground mine. In addition, it is also possible to evaluate the axial gas diffusion of gas in turbulent bulk flow by utilizing the tracer gas data. This paper discussed about the measurement using tracer gas technique in Cibaliung Underground Mine, Indonesia and the evaluation of effective axial diffusion coefficient, E, by numerical simulation. In addition, a scheme to treat network flow in mine ventilation system was also proposed. The effective axial diffusion coefficient for each airway was evaluated based on Taylor's theoretical equation. It is found that the evaluated diffusion coefficient agrees well with Taylor's equation by considering that the wall friction factor, f, is higher than those for smooth pipe flow. It also shows that the value of effective diffusion coefficient can be inherently determined and the value is constant when matching with other measurements. Furthermore, there are possibilities to utilize the tracer gas measurement data to evaluate the airway friction factors. 展开更多
关键词 Tracer gas Effective axial diffusion coefficient Mine ventilation Numerical simulation
下载PDF
The Aerosol Radiative Effect on a Severe Haze Episode in the Yangtze River Delta 被引量:4
3
作者 Kai SUN Hongnian LIU +2 位作者 Xueyuan WANG Zhen PENG Zhe XIONG 《Journal of Meteorological Research》 SCIE CSCD 2017年第5期865-873,共9页
Due to increased aerosol emissions and unfavorable weather conditions, severe haze events have occurred fre- quently in China in the last 10 years. In addition, the interaction between the boundary layer and the aeros... Due to increased aerosol emissions and unfavorable weather conditions, severe haze events have occurred fre- quently in China in the last 10 years. In addition, the interaction between the boundary layer and the aerosol radiative effect may be another important factor in haze formation. To better understand the effect of this interaction, the aero- sol radiative effect on a severe haze episode that took place in December 2013 was investigated by using two WRF- Chem model simulations with different aerosol configurations. The results showed that the maximal reduction of re- gional average surface shortwave radiation, latent heat, and sensible heat during this event were 88, 12, and 37 W m2, respectively. The planetary boundary layer height, daytime temperature, and wind speed dropped by 276 m, I^C, and 0.33 m s-l, respectively. The ventilation coefficient dropped by 8%-24% for in the central and northwestern Yangtze River Delta (YRD). The upper level of the atmosphere was warmed and the lower level was cooled, which stabilized the stratification. In a word, the dispersion ability of the atmosphere was weakened due to the aerosol radi- ative feedback. Additional results showed that the PM2.5 concentration in the central and northwestern YRD in- creased by 6-18 p.g m3, which is less than 15% of the average PM2.5 concentration during the severely polluted peri- od in this area. The vertical profile showed that the PM2.5 and PM10 concentrations increased below 950 hPa, with a maximum increase of 7 and 8 gg m-3, respectively. Concentrations reduced between 950 and 800 hPa, however, with a maximum reduction of 3.5 and 4.5 p.g rn-3, respectively. Generally, the aerosol radiative effect aggravated the level of pollution, but the effect was limited, and this haze event was mainly caused by the stagnant meteorological condi- tions. The interaction between the boundary layer and the aerosol radiative effect may have been less important than the large-scale static weather conditions for the formation of this haze episode. 展开更多
关键词 HAZE aerosol radiative effect Yangtze River Delta ventilation coefficient PM2.5 WRF-Chem
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部