IEEE 1012 [1] describes the SDLC phase activities for software independent verification and validation (IV & V) for nuclear power plant in truly general and conceptual manner, which requires the upward and/or down...IEEE 1012 [1] describes the SDLC phase activities for software independent verification and validation (IV & V) for nuclear power plant in truly general and conceptual manner, which requires the upward and/or downward tailoring on its interpretation for practical IV & V. It contains crucial and encompassing check points and guidelines to analyze the design integrity, without addressing the formalized and the specific criteria for IV & V activities confirming the technical integrity. It is necessary to list up the inspection viewpoint via interpretation of the standard that is practical review points checking design consistency. For fruitful IV & V of Control Element Driving Mechanism Control System (CEDMCS) software for Yonggwang Nuclear Power Plant unit 3 & 4, the specific viewpoints and approach are necessary based on the guidelines of IEEE 1012 to enhance the system quality by considering the level of implementation of the theoretical and the practical IV & V. Additionally IV & V guideline of IEEE 1012 does not specifically provide the concrete measure considering the system characteristics of CEDMCS. This paper provides the seven (7) characteristic criteria for CEDMCS IV & V, and by applying these viewpoints, the design analysis such as function, performance, interface and exception, backward and forward requirement traceability analysis has been conducted. The requirement, design, implementation, and test phase were only considered for IV & V in this project. This article also provides the translation of code to map theoretical verification and validation into practical verification and validation. This paper emphasizes the necessity of the intensive design inspection and walkthrough for requirement phase to resolve the design faults because the IV & V of early phase of SDLC obviously contributes to find out most of critical design inconsistency. Especially for test phase IV & V, it is strongly recommended to prepare the test plan document which is going to be the basis for the test coverage selection and test strategy. This test plan document should be based on the critical characteristics of function and performance of CEDMCS. Also to guarantee the independency of V & V organization participating in this project, and to acquire the full package of design details for IV & V, the systematic approach and efforts with an aspect of management is highlighted among the participants.展开更多
Nuclear industries have faced the unfavorable circumstance such as components obsolescence and aging of instrumentation and control system, therefore, nuclear society is striving to resolve this issue fundamentally. V...Nuclear industries have faced the unfavorable circumstance such as components obsolescence and aging of instrumentation and control system, therefore, nuclear society is striving to resolve this issue fundamentally. Various studies have been conducted to address components obsolescence of instrumentation and control system. Intuitively FPGA (field programmable gate arrays) technology is replacing the high level of micro-processor type equipped with various software and hardware which causes acceleration of the aging and obsolescence in I & C (instrumentation and control) system in nuclear power plants. FPGAs are highlighted as an alternative means for obsolete control systems. When engineers design the control system of NPPs (nuclear power plants) with FPGAs, it is important to meet the system development life cycles and conduct the verification and validation activities regarding to FPGA-based applications for use in NPPs. Because the verification and validation process is more important than the design process, engineer should consider the characteristics of FPGA, HDL (hardware description language) programming, faults mode, and optimization technique. And also these characteristics should be reflected in verification and validation activities. As a minimum requirement, system designers require that HDL-programmed applications should be developed in accordance with system development life cycle and HPD design process. In the verification and validation processes, a review, test, and analysis activities should be properly conducted.展开更多
通常情况下,系统的校核与验证(verification and validation,V&V)所发生的费用大约占到整个系统全生命周期费用的40%,因此,对V&V的全生命周期活动和过程进行优化选择具有巨大的潜在利益.建立了基于策略的费用和风险的数学模型(s...通常情况下,系统的校核与验证(verification and validation,V&V)所发生的费用大约占到整个系统全生命周期费用的40%,因此,对V&V的全生命周期活动和过程进行优化选择具有巨大的潜在利益.建立了基于策略的费用和风险的数学模型(strategy-based risks and costs model,SBRCM),并在此基础上建立了V&V活动优化选择的线性规划模型;同时,对模型应用进行了实证分析,给出了相应的定量数据;针对该模型给出了结论,指出了进一步改进模型的方向.展开更多
文摘IEEE 1012 [1] describes the SDLC phase activities for software independent verification and validation (IV & V) for nuclear power plant in truly general and conceptual manner, which requires the upward and/or downward tailoring on its interpretation for practical IV & V. It contains crucial and encompassing check points and guidelines to analyze the design integrity, without addressing the formalized and the specific criteria for IV & V activities confirming the technical integrity. It is necessary to list up the inspection viewpoint via interpretation of the standard that is practical review points checking design consistency. For fruitful IV & V of Control Element Driving Mechanism Control System (CEDMCS) software for Yonggwang Nuclear Power Plant unit 3 & 4, the specific viewpoints and approach are necessary based on the guidelines of IEEE 1012 to enhance the system quality by considering the level of implementation of the theoretical and the practical IV & V. Additionally IV & V guideline of IEEE 1012 does not specifically provide the concrete measure considering the system characteristics of CEDMCS. This paper provides the seven (7) characteristic criteria for CEDMCS IV & V, and by applying these viewpoints, the design analysis such as function, performance, interface and exception, backward and forward requirement traceability analysis has been conducted. The requirement, design, implementation, and test phase were only considered for IV & V in this project. This article also provides the translation of code to map theoretical verification and validation into practical verification and validation. This paper emphasizes the necessity of the intensive design inspection and walkthrough for requirement phase to resolve the design faults because the IV & V of early phase of SDLC obviously contributes to find out most of critical design inconsistency. Especially for test phase IV & V, it is strongly recommended to prepare the test plan document which is going to be the basis for the test coverage selection and test strategy. This test plan document should be based on the critical characteristics of function and performance of CEDMCS. Also to guarantee the independency of V & V organization participating in this project, and to acquire the full package of design details for IV & V, the systematic approach and efforts with an aspect of management is highlighted among the participants.
文摘Nuclear industries have faced the unfavorable circumstance such as components obsolescence and aging of instrumentation and control system, therefore, nuclear society is striving to resolve this issue fundamentally. Various studies have been conducted to address components obsolescence of instrumentation and control system. Intuitively FPGA (field programmable gate arrays) technology is replacing the high level of micro-processor type equipped with various software and hardware which causes acceleration of the aging and obsolescence in I & C (instrumentation and control) system in nuclear power plants. FPGAs are highlighted as an alternative means for obsolete control systems. When engineers design the control system of NPPs (nuclear power plants) with FPGAs, it is important to meet the system development life cycles and conduct the verification and validation activities regarding to FPGA-based applications for use in NPPs. Because the verification and validation process is more important than the design process, engineer should consider the characteristics of FPGA, HDL (hardware description language) programming, faults mode, and optimization technique. And also these characteristics should be reflected in verification and validation activities. As a minimum requirement, system designers require that HDL-programmed applications should be developed in accordance with system development life cycle and HPD design process. In the verification and validation processes, a review, test, and analysis activities should be properly conducted.
文摘通常情况下,系统的校核与验证(verification and validation,V&V)所发生的费用大约占到整个系统全生命周期费用的40%,因此,对V&V的全生命周期活动和过程进行优化选择具有巨大的潜在利益.建立了基于策略的费用和风险的数学模型(strategy-based risks and costs model,SBRCM),并在此基础上建立了V&V活动优化选择的线性规划模型;同时,对模型应用进行了实证分析,给出了相应的定量数据;针对该模型给出了结论,指出了进一步改进模型的方向.