The unfolding of equivariant bifurcation problems with two types of state variables under the action of group K(Г, △) is discussed by using DA-algebraic tools. One of the main results is the equivariant versal un...The unfolding of equivariant bifurcation problems with two types of state variables under the action of group K(Г, △) is discussed by using DA-algebraic tools. One of the main results is the equivariant versal unfolding theorem.展开更多
Systems of quasilinear first order PDE are studied in the framework of contact manifold. All of the local stable geometric solutions of such systems are classified by using versal deformation and the classification of...Systems of quasilinear first order PDE are studied in the framework of contact manifold. All of the local stable geometric solutions of such systems are classified by using versal deformation and the classification of stable map germs of type ∑1 in singularity theory.展开更多
Let k be a fixed algebraically closed field of arbitrary characteristic,let Λ be a finite dimensional self-injective k-algebra,and let ∨ be an indecomposable non-projective left Λ-module with finite dimension over ...Let k be a fixed algebraically closed field of arbitrary characteristic,let Λ be a finite dimensional self-injective k-algebra,and let ∨ be an indecomposable non-projective left Λ-module with finite dimension over k.We prove that if τΛ∨ is the Auslander-Reiten translation of ∨,then the versal deformation rings R(Λ,∨)and R(Λ,τΛ∨)(in the sense of F.M.Bleher and the second author)are isomorphic.We use this to prove that if Λ is further a cluster-tilted k-algebra,then R(Λ,∨)is universal and isomorphic to k.展开更多
基金Supported by the National Natural Science Foundation of P. R. China (No. 10271023)the Natural Science Foundation of Hunan Province (No. 04JJ3072)
文摘The unfolding of equivariant bifurcation problems with two types of state variables under the action of group K(Г, △) is discussed by using DA-algebraic tools. One of the main results is the equivariant versal unfolding theorem.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 19971035).
文摘Systems of quasilinear first order PDE are studied in the framework of contact manifold. All of the local stable geometric solutions of such systems are classified by using versal deformation and the classification of stable map germs of type ∑1 in singularity theory.
基金supported by the Release Time for Research Scholarship of the Office of Academic Affairs and by the Faculty Research Seed Grant funded by the Office of Sponsored ProgramsResearch Administration at the Valdosta State University as well as partly supported by CODI and Estrategia de Sostenibilidad(Universidad de Antioquia,UdeA).
文摘Let k be a fixed algebraically closed field of arbitrary characteristic,let Λ be a finite dimensional self-injective k-algebra,and let ∨ be an indecomposable non-projective left Λ-module with finite dimension over k.We prove that if τΛ∨ is the Auslander-Reiten translation of ∨,then the versal deformation rings R(Λ,∨)and R(Λ,τΛ∨)(in the sense of F.M.Bleher and the second author)are isomorphic.We use this to prove that if Λ is further a cluster-tilted k-algebra,then R(Λ,∨)is universal and isomorphic to k.