In an inner-product space, an invertible vector generates a reflection with respect to a hyperplane, and the Clifford product of several invertible vectors, called a versor in Clifford algebra, generates the compositi...In an inner-product space, an invertible vector generates a reflection with respect to a hyperplane, and the Clifford product of several invertible vectors, called a versor in Clifford algebra, generates the composition of the corresponding reflections, which is an orthogonal transformation. Given a versor in a Clifford algebra, finding another sequence of invertible vectors of strictly shorter length but whose Clifford product still equals the input versor, is called versor compression. Geometrically, versor compression is equivalent to decomposing an orthogonal transformation into a shorter sequence of reflections. This paper proposes a simple algorithm of compressing versors of symbolic form in Clifford algebra. The algorithm is based on computing the intersections of lines with planes in the corresponding Grassmann-Cayley algebra, and is complete in the case of Euclidean or Minkowski inner-product space.展开更多
文摘In an inner-product space, an invertible vector generates a reflection with respect to a hyperplane, and the Clifford product of several invertible vectors, called a versor in Clifford algebra, generates the composition of the corresponding reflections, which is an orthogonal transformation. Given a versor in a Clifford algebra, finding another sequence of invertible vectors of strictly shorter length but whose Clifford product still equals the input versor, is called versor compression. Geometrically, versor compression is equivalent to decomposing an orthogonal transformation into a shorter sequence of reflections. This paper proposes a simple algorithm of compressing versors of symbolic form in Clifford algebra. The algorithm is based on computing the intersections of lines with planes in the corresponding Grassmann-Cayley algebra, and is complete in the case of Euclidean or Minkowski inner-product space.