Introduction: Breech birth has always been a subject of great interest because of its risks of perinatal morbidity and mortality. Aim: The aim of our study was to compare the maternal and perinatal prognosis of breech...Introduction: Breech birth has always been a subject of great interest because of its risks of perinatal morbidity and mortality. Aim: The aim of our study was to compare the maternal and perinatal prognosis of breech delivery with that of vertex delivery. Patients and Method: This was a retrospective case-control analytical study carried out in the obstetrics and gynaecology department of Ségou hospital over a 2-year period from 1 January 2020 to 31 December 2021, involving 242 breech deliveries compared with 484 top deliveries with a live single foetus without foetal malformation of gestational age ≥ 35 SA. The statistical tests used were: chi² (p Results: The frequency of breech delivery was 3.3%, with a predominance of caesarean section for breech presentation (64.88%) compared with 32.85% for vertex (P: 0.00;CI: (0.191 - 0.367). The perinatal prognosis of fetuses with breech presentations was marked by a higher rate of neonatal asphyxia (Apgar score Conclusion: Breech birth is relatively rare in our department. It carries a higher risk of maternal morbidity and neonatal morbidity than breech delivery. However, the vital prognosis for the mother was identical in both groups.展开更多
High-precision vertex and energy reconstruction are crucial for large liquid scintillator detectors such as that at the Jiangmen Underground Neutrino Observatory(JUNO),especially for the determination of neutrino mass...High-precision vertex and energy reconstruction are crucial for large liquid scintillator detectors such as that at the Jiangmen Underground Neutrino Observatory(JUNO),especially for the determination of neutrino mass ordering by analyzing the energy spectrum of reactor neutrinos.This paper presents a data-driven method to obtain a more realistic and accurate expected PMT response of positron events in JUNO and develops a simultaneous vertex and energy reconstruction method that combines the charge and time information of PMTs.For the JUNO detector,the impact of the vertex inaccuracy on the energy resolution is approximately 0.6%.展开更多
Weighted vertex cover(WVC)is one of the most important combinatorial optimization problems.In this paper,we provide a new game optimization to achieve efficiency and time of solutions for the WVC problem of weighted n...Weighted vertex cover(WVC)is one of the most important combinatorial optimization problems.In this paper,we provide a new game optimization to achieve efficiency and time of solutions for the WVC problem of weighted networks.We first model the WVC problem as a general game on weighted networks.Under the framework of a game,we newly define several cover states to describe the WVC problem.Moreover,we reveal the relationship among these cover states of the weighted network and the strict Nash equilibriums(SNEs)of the game.Then,we propose a game-based asynchronous algorithm(GAA),which can theoretically guarantee that all cover states of vertices converging in an SNE with polynomial time.Subsequently,we improve the GAA by adding 2-hop and 3-hop adjustment mechanisms,termed the improved game-based asynchronous algorithm(IGAA),in which we prove that it can obtain a better solution to the WVC problem than using a the GAA.Finally,numerical simulations demonstrate that the proposed IGAA can obtain a better approximate solution in promising computation time compared with the existing representative algorithms.展开更多
The control of complex networks is affected by their structural characteristic. As a type of key nodes in a network structure, cut vertexes are essential for network connectivity because their removal will disconnect ...The control of complex networks is affected by their structural characteristic. As a type of key nodes in a network structure, cut vertexes are essential for network connectivity because their removal will disconnect the network. Despite their fundamental importance, the influence of the cut vertexes on network control is still uncertain. Here, we reveal the relationship between the cut vertexes and the driver nodes, and find that the driver nodes tend to avoid the cut vertexes.However, driving cut vertexes reduce the energy required for controlling complex networks, since cut vertexes are located near the middle of the control chains. By employing three different node failure strategies, we investigate the impact of cut vertexes failure on the energy required. The results show that cut vertex failures markedly increase the control energy because the cut vertexes are larger-degree nodes. Our results deepen the understanding of the structural characteristic in network control.展开更多
In this article, we define the arithmetic operations of generalized trapezoidal picture fuzzy numbers by vertex method which is assembled on a combination of the (α, γ, β)-cut concept and standard interval analysis...In this article, we define the arithmetic operations of generalized trapezoidal picture fuzzy numbers by vertex method which is assembled on a combination of the (α, γ, β)-cut concept and standard interval analysis. Various related properties are explored. Finally, some computations of picture fuzzy functions over generalized picture fuzzy variables are illustrated by using our proposed technique.展开更多
A vertex-colored graph G is said to be rainbow vertex-connected if every two vertices of G are connected by a path whose internal vertices have distinct colors, such a path is called a rainbow path. The rainbow vertex...A vertex-colored graph G is said to be rainbow vertex-connected if every two vertices of G are connected by a path whose internal vertices have distinct colors, such a path is called a rainbow path. The rainbow vertex-connection number of a connected graph G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertex-connected. If for every pair u, v of distinct vertices, G contains a rainbow u-v geodesic, then G is strong rainbow vertex-connected. The minimum number k for which there exists a k-vertex-coloring of G that results in a strongly rainbow vertex-connected graph is called the strong rainbow vertex-connection number of G, denoted by srvc(G). Observe that rvc(G) ≤ srvc(G) for any nontrivial connected graph G. In this paper, for a Ladder L_n,we determine the exact value of srvc(L_n) for n even. For n odd, upper and lower bounds of srvc(L_n) are obtained. We also give upper and lower bounds of the(strong) rainbow vertex-connection number of Mbius Ladder.展开更多
Let G be a simple graph. A total coloring f of G is called an E-total coloring if no two adjacent vertices of G receive the same color, and no edge of G receives the same color as one of its endpoints....Let G be a simple graph. A total coloring f of G is called an E-total coloring if no two adjacent vertices of G receive the same color, and no edge of G receives the same color as one of its endpoints. For an E-total coloring f of a graph G and any vertex x of G, let C(x) denote the set of colors of vertex x and of the edges incident with x, we call C(x) the color set of x. If C(u) ≠ C(v) for any two different vertices u and v of V (G), then we say that f is a vertex-distinguishing E-total coloring of G or a VDET coloring of G for short. The minimum number of colors required for a VDET coloring of G is denoted by Хvt^e(G) and is called the VDE T chromatic number of G. The VDET coloring of complete bipartite graph K7,n (7 ≤ n ≤ 95) is discussed in this paper and the VDET chromatic number of K7,n (7 ≤ n ≤ 95) has been obtained.展开更多
Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges i...Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges incident to u under f. For an IE-total coloring f of G using k colors, if C(u)=C(v) for any two different vertices u and v of V (G), then f is called a k-vertex-distinguishing IE-total-coloring of G, or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χievt(G), and is called the VDIET chromatic number of G. We get the VDIET chromatic numbers of cycles and wheels, and propose related conjectures in this paper.展开更多
Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), i...Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), if for uv ∈ E(G), we have f(u) ≠ f(v), f(u) ≠ f(uv), f(v) ≠ f(uv), C(u) ≠C(v), where C(u) = {f(u)}∪{f(uv)|uv ∈ E(G)}. The least number of k colors required for which G admits a k-coloring is called the adjacent vertex-distinguishing E-total chromatic number of G is denoted by x^e_(at) (G). In this paper, the adjacent vertexdistinguishing E-total colorings of some join graphs C_m∨G_n are obtained, where G_n is one of a star S_n , a fan F_n , a wheel W_n and a complete graph K_n . As a consequence, the adjacent vertex-distinguishing E-total chromatic numbers of C_m∨G_n are confirmed.展开更多
Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of verte...Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of vertex x and edges incident to x under f. For an IE-total coloring f of G using k colors, if C(u) ≠ C(v) for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χ_(vt)^(ie) (G) and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G for short. The VDIET colorings of complete bipartite graphs K_(8,n)are discussed in this paper. Particularly, the VDIET chromatic number of K_(8,n) are obtained.展开更多
Let G be a simple graph of order at least 2.A VE-total-coloring using k colors of a graph G is a mapping f from V (G) E(G) into {1,2,···,k} such that no edge receives the same color as one of its endpoi...Let G be a simple graph of order at least 2.A VE-total-coloring using k colors of a graph G is a mapping f from V (G) E(G) into {1,2,···,k} such that no edge receives the same color as one of its endpoints.Let C(u)={f(u)} {f(uv) | uv ∈ E(G)} be the color-set of u.If C(u)=C(v) for any two vertices u and v of V (G),then f is called a k-vertex-distinguishing VE-total coloring of G or a k-VDVET coloring of G for short.The minimum number of colors required for a VDVET coloring of G is denoted by χ ve vt (G) and it is called the VDVET chromatic number of G.In this paper we get cycle C n,path P n and complete graph K n of their VDVET chromatic numbers and propose a related conjecture.展开更多
Let G be a 2 connected graph with n vertices. In this paper, we prove that if there exist two vertices of any there independent vertices in G such that the sum of whose degree is at least n , then G ...Let G be a 2 connected graph with n vertices. In this paper, we prove that if there exist two vertices of any there independent vertices in G such that the sum of whose degree is at least n , then G is pancyclic, or G is K n/2,n/2 , or G is K n/2,n/2 -e , or G is a cycle of length 5.展开更多
Let G be a 2 connected simple graph of order n ( n ≥5) and minimum degree δ . In this paper, we show that if for any two nonadjacent vertices u , v of G there holds | N(u)∪N(v)|≥n-δ , t...Let G be a 2 connected simple graph of order n ( n ≥5) and minimum degree δ . In this paper, we show that if for any two nonadjacent vertices u , v of G there holds | N(u)∪N(v)|≥n-δ , then G is {3,4} - vertex pancyclic unless G≌K n2,n2 .展开更多
Let f be a proper edge coloring of G using k colors. For each x ∈ V(G), the set of the colors appearing on the edges incident with x is denoted by Sf(x) or simply S(x) if no confusion arise. If S(u) = S(v) ...Let f be a proper edge coloring of G using k colors. For each x ∈ V(G), the set of the colors appearing on the edges incident with x is denoted by Sf(x) or simply S(x) if no confusion arise. If S(u) = S(v) and S(v) S(u) for any two adjacent vertices u and v, then f is called a Smarandachely adjacent vertex distinguishing proper edge col- oring using k colors, or k-SA-edge coloring. The minimum number k for which G has a Smarandachely adjacent-vertex-distinguishing proper edge coloring using k colors is called the Smarandachely adjacent-vertex-distinguishing proper edge chromatic number, or SA- edge chromatic number for short, and denoted by Xsa(G). In this paper, we have discussed the SA-edge chromatic number of K4 V Kn.展开更多
Concave vertex of an object is an important parameter for analyzing an object’s shape. A new algorithm for searching concave vertex is proposed in this paper. The new algorithm requires tracking the border firstly,an...Concave vertex of an object is an important parameter for analyzing an object’s shape. A new algorithm for searching concave vertex is proposed in this paper. The new algorithm requires tracking the border firstly,and then uses sampling border to obtain coordinates sequence of discrete boundary points. Each sampling point of the discrete border is determined to be either concave or convex according to the value of vector product. Two inflexions can be searched by the change of concavo-convex trend. The region between two inflexions is defined as concave area. The values of distance are calculated between all boundary points on the concave area and a straight line connected by two inflexions. The boundary point corresponding to the greatest distances is max concave vertex,or the object’s concave vertex. Experimental results have proved that the new algorithm can extract the max concave vertexes of an object accurately and reliably.展开更多
文摘Introduction: Breech birth has always been a subject of great interest because of its risks of perinatal morbidity and mortality. Aim: The aim of our study was to compare the maternal and perinatal prognosis of breech delivery with that of vertex delivery. Patients and Method: This was a retrospective case-control analytical study carried out in the obstetrics and gynaecology department of Ségou hospital over a 2-year period from 1 January 2020 to 31 December 2021, involving 242 breech deliveries compared with 484 top deliveries with a live single foetus without foetal malformation of gestational age ≥ 35 SA. The statistical tests used were: chi² (p Results: The frequency of breech delivery was 3.3%, with a predominance of caesarean section for breech presentation (64.88%) compared with 32.85% for vertex (P: 0.00;CI: (0.191 - 0.367). The perinatal prognosis of fetuses with breech presentations was marked by a higher rate of neonatal asphyxia (Apgar score Conclusion: Breech birth is relatively rare in our department. It carries a higher risk of maternal morbidity and neonatal morbidity than breech delivery. However, the vital prognosis for the mother was identical in both groups.
基金supported by the National Key R&D Program of China(No.2018YFA0404100)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.12175257)+1 种基金the National Natural Science Foundation of China(No.12175257)the Science Foundation of High-Level Talents of Wuyi University(No.2021AL027).
文摘High-precision vertex and energy reconstruction are crucial for large liquid scintillator detectors such as that at the Jiangmen Underground Neutrino Observatory(JUNO),especially for the determination of neutrino mass ordering by analyzing the energy spectrum of reactor neutrinos.This paper presents a data-driven method to obtain a more realistic and accurate expected PMT response of positron events in JUNO and develops a simultaneous vertex and energy reconstruction method that combines the charge and time information of PMTs.For the JUNO detector,the impact of the vertex inaccuracy on the energy resolution is approximately 0.6%.
基金partly supported by the National Natural Science Foundation of China(61751303,U20A2068,11771013)the Zhejiang Provincial Natural Science Foundation of China(LD19A010001)the Fundamental Research Funds for the Central Universities。
文摘Weighted vertex cover(WVC)is one of the most important combinatorial optimization problems.In this paper,we provide a new game optimization to achieve efficiency and time of solutions for the WVC problem of weighted networks.We first model the WVC problem as a general game on weighted networks.Under the framework of a game,we newly define several cover states to describe the WVC problem.Moreover,we reveal the relationship among these cover states of the weighted network and the strict Nash equilibriums(SNEs)of the game.Then,we propose a game-based asynchronous algorithm(GAA),which can theoretically guarantee that all cover states of vertices converging in an SNE with polynomial time.Subsequently,we improve the GAA by adding 2-hop and 3-hop adjustment mechanisms,termed the improved game-based asynchronous algorithm(IGAA),in which we prove that it can obtain a better solution to the WVC problem than using a the GAA.Finally,numerical simulations demonstrate that the proposed IGAA can obtain a better approximate solution in promising computation time compared with the existing representative algorithms.
基金supported by the National Natural Science Foundation of China (Grant No. 61763013)the Natural Science Foundation of Jiangxi Province of China (Grant No. 20202BABL212008)+1 种基金the Jiangxi Provincial Postdoctoral Preferred Project of China (Grant No. 2017KY37)the Key Research and Development Project of Jiangxi Province of China (Grant No. 20202BBEL53018)。
文摘The control of complex networks is affected by their structural characteristic. As a type of key nodes in a network structure, cut vertexes are essential for network connectivity because their removal will disconnect the network. Despite their fundamental importance, the influence of the cut vertexes on network control is still uncertain. Here, we reveal the relationship between the cut vertexes and the driver nodes, and find that the driver nodes tend to avoid the cut vertexes.However, driving cut vertexes reduce the energy required for controlling complex networks, since cut vertexes are located near the middle of the control chains. By employing three different node failure strategies, we investigate the impact of cut vertexes failure on the energy required. The results show that cut vertex failures markedly increase the control energy because the cut vertexes are larger-degree nodes. Our results deepen the understanding of the structural characteristic in network control.
文摘In this article, we define the arithmetic operations of generalized trapezoidal picture fuzzy numbers by vertex method which is assembled on a combination of the (α, γ, β)-cut concept and standard interval analysis. Various related properties are explored. Finally, some computations of picture fuzzy functions over generalized picture fuzzy variables are illustrated by using our proposed technique.
基金Supported by the National Natural Science Foundation of China(11551001,11061027,11261047,11161037,11461054)Supported by the Science Found of Qinghai Province(2016-ZJ-948Q,2014-ZJ-907)
文摘A vertex-colored graph G is said to be rainbow vertex-connected if every two vertices of G are connected by a path whose internal vertices have distinct colors, such a path is called a rainbow path. The rainbow vertex-connection number of a connected graph G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertex-connected. If for every pair u, v of distinct vertices, G contains a rainbow u-v geodesic, then G is strong rainbow vertex-connected. The minimum number k for which there exists a k-vertex-coloring of G that results in a strongly rainbow vertex-connected graph is called the strong rainbow vertex-connection number of G, denoted by srvc(G). Observe that rvc(G) ≤ srvc(G) for any nontrivial connected graph G. In this paper, for a Ladder L_n,we determine the exact value of srvc(L_n) for n even. For n odd, upper and lower bounds of srvc(L_n) are obtained. We also give upper and lower bounds of the(strong) rainbow vertex-connection number of Mbius Ladder.
文摘Let G be a simple graph. A total coloring f of G is called an E-total coloring if no two adjacent vertices of G receive the same color, and no edge of G receives the same color as one of its endpoints. For an E-total coloring f of a graph G and any vertex x of G, let C(x) denote the set of colors of vertex x and of the edges incident with x, we call C(x) the color set of x. If C(u) ≠ C(v) for any two different vertices u and v of V (G), then we say that f is a vertex-distinguishing E-total coloring of G or a VDET coloring of G for short. The minimum number of colors required for a VDET coloring of G is denoted by Хvt^e(G) and is called the VDE T chromatic number of G. The VDET coloring of complete bipartite graph K7,n (7 ≤ n ≤ 95) is discussed in this paper and the VDET chromatic number of K7,n (7 ≤ n ≤ 95) has been obtained.
基金The NSF(61163037,61163054) of Chinathe Scientific Research Project(nwnu-kjcxgc-03-61) of Northwest Normal University
文摘Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges incident to u under f. For an IE-total coloring f of G using k colors, if C(u)=C(v) for any two different vertices u and v of V (G), then f is called a k-vertex-distinguishing IE-total-coloring of G, or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χievt(G), and is called the VDIET chromatic number of G. We get the VDIET chromatic numbers of cycles and wheels, and propose related conjectures in this paper.
基金Supported by the NNSF of China(10771091)Supported by the Qinglan Project of Lianyungang Teacher’s College(2009QLD3)
文摘Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), if for uv ∈ E(G), we have f(u) ≠ f(v), f(u) ≠ f(uv), f(v) ≠ f(uv), C(u) ≠C(v), where C(u) = {f(u)}∪{f(uv)|uv ∈ E(G)}. The least number of k colors required for which G admits a k-coloring is called the adjacent vertex-distinguishing E-total chromatic number of G is denoted by x^e_(at) (G). In this paper, the adjacent vertexdistinguishing E-total colorings of some join graphs C_m∨G_n are obtained, where G_n is one of a star S_n , a fan F_n , a wheel W_n and a complete graph K_n . As a consequence, the adjacent vertex-distinguishing E-total chromatic numbers of C_m∨G_n are confirmed.
基金Supported by the National Natural Science Foundation of China(61163037, 61163054, 11261046, 61363060)
文摘Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of vertex x and edges incident to x under f. For an IE-total coloring f of G using k colors, if C(u) ≠ C(v) for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χ_(vt)^(ie) (G) and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G for short. The VDIET colorings of complete bipartite graphs K_(8,n)are discussed in this paper. Particularly, the VDIET chromatic number of K_(8,n) are obtained.
基金Supported by the NNSF of China(61163037,61163054)Supported by the Scientific Research Foundation of Ningxia University((E):ndzr09-15)
文摘Let G be a simple graph of order at least 2.A VE-total-coloring using k colors of a graph G is a mapping f from V (G) E(G) into {1,2,···,k} such that no edge receives the same color as one of its endpoints.Let C(u)={f(u)} {f(uv) | uv ∈ E(G)} be the color-set of u.If C(u)=C(v) for any two vertices u and v of V (G),then f is called a k-vertex-distinguishing VE-total coloring of G or a k-VDVET coloring of G for short.The minimum number of colors required for a VDVET coloring of G is denoted by χ ve vt (G) and it is called the VDVET chromatic number of G.In this paper we get cycle C n,path P n and complete graph K n of their VDVET chromatic numbers and propose a related conjecture.
文摘Let G be a 2 connected graph with n vertices. In this paper, we prove that if there exist two vertices of any there independent vertices in G such that the sum of whose degree is at least n , then G is pancyclic, or G is K n/2,n/2 , or G is K n/2,n/2 -e , or G is a cycle of length 5.
文摘Let G be a 2 connected simple graph of order n ( n ≥5) and minimum degree δ . In this paper, we show that if for any two nonadjacent vertices u , v of G there holds | N(u)∪N(v)|≥n-δ , then G is {3,4} - vertex pancyclic unless G≌K n2,n2 .
基金Supported by NNSF of China(61163037,61163054,61363060)
文摘Let f be a proper edge coloring of G using k colors. For each x ∈ V(G), the set of the colors appearing on the edges incident with x is denoted by Sf(x) or simply S(x) if no confusion arise. If S(u) = S(v) and S(v) S(u) for any two adjacent vertices u and v, then f is called a Smarandachely adjacent vertex distinguishing proper edge col- oring using k colors, or k-SA-edge coloring. The minimum number k for which G has a Smarandachely adjacent-vertex-distinguishing proper edge coloring using k colors is called the Smarandachely adjacent-vertex-distinguishing proper edge chromatic number, or SA- edge chromatic number for short, and denoted by Xsa(G). In this paper, we have discussed the SA-edge chromatic number of K4 V Kn.
基金Supported by Natural Science Foundation of Guangdong Province (No.8451051501000501)the Science and Technology Projects of Guangdong Province (No.2009B-010800029)
文摘Concave vertex of an object is an important parameter for analyzing an object’s shape. A new algorithm for searching concave vertex is proposed in this paper. The new algorithm requires tracking the border firstly,and then uses sampling border to obtain coordinates sequence of discrete boundary points. Each sampling point of the discrete border is determined to be either concave or convex according to the value of vector product. Two inflexions can be searched by the change of concavo-convex trend. The region between two inflexions is defined as concave area. The values of distance are calculated between all boundary points on the concave area and a straight line connected by two inflexions. The boundary point corresponding to the greatest distances is max concave vertex,or the object’s concave vertex. Experimental results have proved that the new algorithm can extract the max concave vertexes of an object accurately and reliably.