期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Adjacent Vertex Distinguishing Total Coloring of M(Tn)
1
作者 GU Yu-ying WANG Shu-dong 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2008年第4期621-624,共4页
A k-proper total coloring of G is called adjacent distinguishing if for any two adjacent vertices have different color sets. According to the property of trees, the adjacent vertex distinguishing total chromatic numbe... A k-proper total coloring of G is called adjacent distinguishing if for any two adjacent vertices have different color sets. According to the property of trees, the adjacent vertex distinguishing total chromatic number will be determined for the Mycielski graphs of trees using the method of induction. 展开更多
关键词 total coloring adjacent vertex distinguishing total coloring Mycielski graph
下载PDF
An Upper Bound for the Adjacent Vertex-Distinguishing Total Chromatic Number of a Graph 被引量:17
2
作者 LIU Xin Sheng AN Ming Qiang GAO Yang 《Journal of Mathematical Research and Exposition》 CSCD 2009年第2期343-348,共6页
Let G = (V, E) be a simple connected graph, and |V(G)| ≥ 2. Let f be a mapping from V(G) ∪ E(G) to {1,2…, k}. If arbitary uv ∈ E(G),f(u) ≠ f(v),f(u) ≠ f(uv),f(v) ≠ f(uv); arbitary uv, uw... Let G = (V, E) be a simple connected graph, and |V(G)| ≥ 2. Let f be a mapping from V(G) ∪ E(G) to {1,2…, k}. If arbitary uv ∈ E(G),f(u) ≠ f(v),f(u) ≠ f(uv),f(v) ≠ f(uv); arbitary uv, uw ∈ E(G)(v ≠ w), f(uv) ≠ f(uw);arbitary uv ∈ E(G) and u ≠ v, C(u) ≠ C(v), whereC(u)={f(u)}∪{f(uv)|uv∈E(G)}.Then f is called a k-adjacent-vertex-distinguishing-proper-total coloring of the graph G(k-AVDTC of G for short). The number min{k|k-AVDTC of G} is called the adjacent vertex-distinguishing total chromatic number and denoted by χat(G). In this paper we prove that if △(G) is at least a particular constant and δ ≥32√△ln△, then χat(G) ≤ △(G) + 10^26 + 2√△ln△. 展开更多
关键词 total coloring adjacent vertex distinguishing total coloring adjacent vertex distinguishing total chromatic number Lovasz local lemma.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部