Conventional seismic wave forward simulation generally uses mathematical means to solve the macroscopic wave equation,and then obtains the corresponding seismic wavefield.Usually,when the subsurface structure is finel...Conventional seismic wave forward simulation generally uses mathematical means to solve the macroscopic wave equation,and then obtains the corresponding seismic wavefield.Usually,when the subsurface structure is finely constructed and the continuity of media is poor,this strategy is difficult to meet the requirements of accurate wavefield calculation.This paper uses the multiple-relaxation-time lattice Boltzmann method(MRT-LBM)to conduct the seismic acoustic wavefield simulation and verify its computational accuracy.To cope with the problem of severe reflections at the truncated boundaries,we analogize the viscous absorbing boundary and perfectly matched layer(PML)absorbing boundary based on the single-relaxation-time lattice Boltzmann(SRT-LB)equation to the MRT-LB equation,and further,propose a joint absorbing boundary through comparative analysis.We give the specific forms of the modified MRT-LB equation loaded with the joint absorbing boundary in the two-dimensional(2D)and three-dimensional(3D)cases,respectively.Then,we verify the effects of this absorbing boundary scheme on a 2D homogeneous model,2D modified British Petroleum(BP)gas-cloud model,and 3D homogeneous model,respectively.The results reveal that by comparing with the viscous absorbing boundary and PML absorbing boundary,the joint absorbing boundary has the best absorption performance,although it is a little bit complicated.Therefore,this joint absorbing boundary better solves the problem of truncated boundary reflections of MRT-LBM in simulating seismic acoustic wavefields,which is pivotal to its wide application in the field of exploration seismology.展开更多
某黑色聚氨酯材料样本放置于自行设计的管道脉冲吸声测量装置的管道中间以及管道末端并紧贴刚性背衬两种情况下,利用产生的1 m s的巴特沃斯函数声脉冲测量其吸声系数。样本放于声管末端的反射法测量结果与B&K4206阻抗管测量结果相近...某黑色聚氨酯材料样本放置于自行设计的管道脉冲吸声测量装置的管道中间以及管道末端并紧贴刚性背衬两种情况下,利用产生的1 m s的巴特沃斯函数声脉冲测量其吸声系数。样本放于声管末端的反射法测量结果与B&K4206阻抗管测量结果相近;而放于声管中间的透射法测量结果与反射法有区别。从声能量角度解算了两种测量的平均吸声系数表明:相比于单层样品,双层样品的透射法测量结果与反射法更接近。展开更多
基金This work is supported in part by the National Natural Science Foundation of China(U19B6003-04-01,42204132,41874130)R&D Department of CNPC(2022DQ0604-01)China Postdoctoral Science Foundation(2020M680667,2021T140661).
文摘Conventional seismic wave forward simulation generally uses mathematical means to solve the macroscopic wave equation,and then obtains the corresponding seismic wavefield.Usually,when the subsurface structure is finely constructed and the continuity of media is poor,this strategy is difficult to meet the requirements of accurate wavefield calculation.This paper uses the multiple-relaxation-time lattice Boltzmann method(MRT-LBM)to conduct the seismic acoustic wavefield simulation and verify its computational accuracy.To cope with the problem of severe reflections at the truncated boundaries,we analogize the viscous absorbing boundary and perfectly matched layer(PML)absorbing boundary based on the single-relaxation-time lattice Boltzmann(SRT-LB)equation to the MRT-LB equation,and further,propose a joint absorbing boundary through comparative analysis.We give the specific forms of the modified MRT-LB equation loaded with the joint absorbing boundary in the two-dimensional(2D)and three-dimensional(3D)cases,respectively.Then,we verify the effects of this absorbing boundary scheme on a 2D homogeneous model,2D modified British Petroleum(BP)gas-cloud model,and 3D homogeneous model,respectively.The results reveal that by comparing with the viscous absorbing boundary and PML absorbing boundary,the joint absorbing boundary has the best absorption performance,although it is a little bit complicated.Therefore,this joint absorbing boundary better solves the problem of truncated boundary reflections of MRT-LBM in simulating seismic acoustic wavefields,which is pivotal to its wide application in the field of exploration seismology.
文摘某黑色聚氨酯材料样本放置于自行设计的管道脉冲吸声测量装置的管道中间以及管道末端并紧贴刚性背衬两种情况下,利用产生的1 m s的巴特沃斯函数声脉冲测量其吸声系数。样本放于声管末端的反射法测量结果与B&K4206阻抗管测量结果相近;而放于声管中间的透射法测量结果与反射法有区别。从声能量角度解算了两种测量的平均吸声系数表明:相比于单层样品,双层样品的透射法测量结果与反射法更接近。