Spatial structures such as a gymnasium and an exhibition hall often use ceilings because of enhancing sound effects and reducing heating bills. Although the ceiling members fell down on a large scale due to the seismi...Spatial structures such as a gymnasium and an exhibition hall often use ceilings because of enhancing sound effects and reducing heating bills. Although the ceiling members fell down on a large scale due to the seismic motion according to the past great earthquake disaster reports, structural engineers particularly do not carry out the seismic design. The study gives structural engineers the equivalent static loads for the design of the earthquake-proof design of the ceiling system. In particular, it is significant to investigate the dynamic behavior and the applied seismic loads for the complicated vibration of the long span arch building structures with RC columns.展开更多
The recent plethora of GPS observations compensates for the 20-year-old lack in vertical displacement data for the Guanzhong region. The 2001—2007 three-dimensional(3D) crustal deformation data suggest regional mov...The recent plethora of GPS observations compensates for the 20-year-old lack in vertical displacement data for the Guanzhong region. The 2001—2007 three-dimensional(3D) crustal deformation data suggest regional movement with a horizontal velocity of 3—7 mm/a,predominantly from SSE in the west to SE in the east, and vertical inherited movement with velocity of -7 mm/a to 4 mm/a. After the Wenchuan earthquake, the GPS data suggest that the effect of the earthquake on the regional deformation is greater in the west than the east.The horizontal displacement increased during 2007—2008; however, the reverse was observed in 2008—2009. The vertical displacement in the western part of the region increased in 2008 and has been gradually returning to normal since 2009; however, in the eastern part,the effect of the earthquake remains.展开更多
The vertical deformation gradient can reflect the rate of vertical change in unit distance,and the vertical deformation velocity gradient can reflect the strength of the earth's crust tectonic activities. In this ...The vertical deformation gradient can reflect the rate of vertical change in unit distance,and the vertical deformation velocity gradient can reflect the strength of the earth's crust tectonic activities. In this paper,using long period leveling data combined with GPS data,the vertical deformation gradient values are calculated. Leveling data and GPS data are two different means of monitoring deformation,but the result is approximately the same vertical deformation gradient. The results show that the spatial distribution of the vertical deformation velocity gradient and tectonic distribution has an obvious correlation. The most significant gradient anomalies along the North-South Seismic Belt are Xianshuihe fault, Longmenshan fault and Xiaojiang-Zemuhe fault, while the second gradient anomalies in the northeastern Qinghai-Tibetan plateau are Zhuanglanghe fault and Lenglongling fault. The Menyuan M_S6. 4 earthquake in 2016 occurred in this abnormal area. However,according to the vertical deformation high gradient area distribution,there is also the possibility of an earthquake occurrence in the Tianzhu and Jingtai area.The area of convergence of three major fault zones is the strongest tectonically active region of the North-South Seismic Belt.展开更多
Seismic method is usually used for elastic parametric estimation. This is why this method presents dynamic parameters of Earth. Frequency seismic range changes greatly from geodynamic modelling time. Now we have oppor...Seismic method is usually used for elastic parametric estimation. This is why this method presents dynamic parameters of Earth. Frequency seismic range changes greatly from geodynamic modelling time. Now we have opportunity to use geodesy result for some years for elastic parameters estimation. Static solution from elastic theory may be used for the interpretation of long term results. It presents static elastic parameter. The inverse problem for different types of vertical surface loading on one year period is calculated. Two cases of loading with maximal and minimal area are presented. Results are determined by space geodesy and leveling methods. Current relation between atmospheric pressure and vertical displacements was estimated at the center of Siberian Anti Cyclone with size varied from 2000 km to 3000 kin. Pressure-displacement coefficients (PDC) can be achieved by three years obser- vation (0.997 mm/mbar for NVSK GPS station). It is used for elastic module study of geology medium with maximum thickness up to 600 km. In the context of elastic model, the modulus of rigidity is estimated to be 113 GPa. Vast expanse of anti-cyclone may relate with rheology of crust and upper mantle. Smaller size of surface loading - local loading is seasonal variation of water reservoir. Annual vertical changes were obtained by leveling near the dam of the reservoir. PDC ratio was 1.15 mm/bar for these places. In elastic theory, the Young modulus E = 80 GPa (Poisson ratio = 0.25, the modulus of rigidity - 32 GPa) was calculated by sixteen years of leveling measurements. This result can effectively be represented for upper crust. Our results were checked by solution for coseismic displacement of Chyia- Altai earthquake (Sep. 27, 2003, M = 7.3). Coseismic results calculated by static modules agree with experimental coseismic GPS data at 10% level.展开更多
文摘Spatial structures such as a gymnasium and an exhibition hall often use ceilings because of enhancing sound effects and reducing heating bills. Although the ceiling members fell down on a large scale due to the seismic motion according to the past great earthquake disaster reports, structural engineers particularly do not carry out the seismic design. The study gives structural engineers the equivalent static loads for the design of the earthquake-proof design of the ceiling system. In particular, it is significant to investigate the dynamic behavior and the applied seismic loads for the complicated vibration of the long span arch building structures with RC columns.
基金supported by the Shanxi Science and Technology Research and Development program(2012SF2-17)National Nature Science Foundation of China(41174083)
文摘The recent plethora of GPS observations compensates for the 20-year-old lack in vertical displacement data for the Guanzhong region. The 2001—2007 three-dimensional(3D) crustal deformation data suggest regional movement with a horizontal velocity of 3—7 mm/a,predominantly from SSE in the west to SE in the east, and vertical inherited movement with velocity of -7 mm/a to 4 mm/a. After the Wenchuan earthquake, the GPS data suggest that the effect of the earthquake on the regional deformation is greater in the west than the east.The horizontal displacement increased during 2007—2008; however, the reverse was observed in 2008—2009. The vertical displacement in the western part of the region increased in 2008 and has been gradually returning to normal since 2009; however, in the eastern part,the effect of the earthquake remains.
基金jointly funded by the Project of Science for Earthquake Resilience(XH17059)regular projects of Earthquake Monitoring and Prediction(16H38ZX345)
文摘The vertical deformation gradient can reflect the rate of vertical change in unit distance,and the vertical deformation velocity gradient can reflect the strength of the earth's crust tectonic activities. In this paper,using long period leveling data combined with GPS data,the vertical deformation gradient values are calculated. Leveling data and GPS data are two different means of monitoring deformation,but the result is approximately the same vertical deformation gradient. The results show that the spatial distribution of the vertical deformation velocity gradient and tectonic distribution has an obvious correlation. The most significant gradient anomalies along the North-South Seismic Belt are Xianshuihe fault, Longmenshan fault and Xiaojiang-Zemuhe fault, while the second gradient anomalies in the northeastern Qinghai-Tibetan plateau are Zhuanglanghe fault and Lenglongling fault. The Menyuan M_S6. 4 earthquake in 2016 occurred in this abnormal area. However,according to the vertical deformation high gradient area distribution,there is also the possibility of an earthquake occurrence in the Tianzhu and Jingtai area.The area of convergence of three major fault zones is the strongest tectonically active region of the North-South Seismic Belt.
文摘Seismic method is usually used for elastic parametric estimation. This is why this method presents dynamic parameters of Earth. Frequency seismic range changes greatly from geodynamic modelling time. Now we have opportunity to use geodesy result for some years for elastic parameters estimation. Static solution from elastic theory may be used for the interpretation of long term results. It presents static elastic parameter. The inverse problem for different types of vertical surface loading on one year period is calculated. Two cases of loading with maximal and minimal area are presented. Results are determined by space geodesy and leveling methods. Current relation between atmospheric pressure and vertical displacements was estimated at the center of Siberian Anti Cyclone with size varied from 2000 km to 3000 kin. Pressure-displacement coefficients (PDC) can be achieved by three years obser- vation (0.997 mm/mbar for NVSK GPS station). It is used for elastic module study of geology medium with maximum thickness up to 600 km. In the context of elastic model, the modulus of rigidity is estimated to be 113 GPa. Vast expanse of anti-cyclone may relate with rheology of crust and upper mantle. Smaller size of surface loading - local loading is seasonal variation of water reservoir. Annual vertical changes were obtained by leveling near the dam of the reservoir. PDC ratio was 1.15 mm/bar for these places. In elastic theory, the Young modulus E = 80 GPa (Poisson ratio = 0.25, the modulus of rigidity - 32 GPa) was calculated by sixteen years of leveling measurements. This result can effectively be represented for upper crust. Our results were checked by solution for coseismic displacement of Chyia- Altai earthquake (Sep. 27, 2003, M = 7.3). Coseismic results calculated by static modules agree with experimental coseismic GPS data at 10% level.