Supercritical carbon dioxide(S-CO_(2))is one of the most promising working fluids in energy conversion systems.However,the instability of the flow and heat transfer has caused great harm to the security of energy conv...Supercritical carbon dioxide(S-CO_(2))is one of the most promising working fluids in energy conversion systems.However,the instability of the flow and heat transfer has caused great harm to the security of energy conversion systems.In this work,a transient model based on the Finite Volume Method is set up to investigate the flow and heat transfer instability of CO_(2) changing from a subcritical state to a supercritical state in a vertical heated circular tube.The instability occurs when the wall heat flux is higher than a critical value,which makes the density and mass flow rate variations large enough.A large variation of the density triggers self-sustained oscillations in the flow.The critical heat flux heightens with the higher inlet pressure and pressure drop,larger tube diameter,and lower inlet temperature,but it reduces with the lengthening of the tube.To reflect the density-variation degree for the corresponding heat flux,a dimensionless number N_(tpc)=qπDL/Mβ_(pc)(p)/C_(p,pc)(p)(trans-pseudocritical number)is introduced.The critical trans-pseudocritical number Ntpc,c first goes up and down with the increase of the inlet pressure and the reduction of the inlet temperature.The rise of the mass flow rate,the shortening of the tube length,and the enlargement of the tube diameter all induce the temperature difference along the radial direction to become large.These tendencies make the critical Ntpc,c small.Consequently,the stability boundary N_(tpc,c)=48.47(N_(psc))^(1.048)(Δp∗)^(0.359)(D/L)^(−0.026)(G∗)^(−0.335)(ρ∗)^(2.666) is obtained to distinguish the regions of the flow and heat transfer stability and instability.展开更多
基金The authors acknowledge the financial support of the National Key R&D Program of China(No.2017YFB0601803)Natural Science Foundation of Guangdong Province(No.2019A1515012119).
文摘Supercritical carbon dioxide(S-CO_(2))is one of the most promising working fluids in energy conversion systems.However,the instability of the flow and heat transfer has caused great harm to the security of energy conversion systems.In this work,a transient model based on the Finite Volume Method is set up to investigate the flow and heat transfer instability of CO_(2) changing from a subcritical state to a supercritical state in a vertical heated circular tube.The instability occurs when the wall heat flux is higher than a critical value,which makes the density and mass flow rate variations large enough.A large variation of the density triggers self-sustained oscillations in the flow.The critical heat flux heightens with the higher inlet pressure and pressure drop,larger tube diameter,and lower inlet temperature,but it reduces with the lengthening of the tube.To reflect the density-variation degree for the corresponding heat flux,a dimensionless number N_(tpc)=qπDL/Mβ_(pc)(p)/C_(p,pc)(p)(trans-pseudocritical number)is introduced.The critical trans-pseudocritical number Ntpc,c first goes up and down with the increase of the inlet pressure and the reduction of the inlet temperature.The rise of the mass flow rate,the shortening of the tube length,and the enlargement of the tube diameter all induce the temperature difference along the radial direction to become large.These tendencies make the critical Ntpc,c small.Consequently,the stability boundary N_(tpc,c)=48.47(N_(psc))^(1.048)(Δp∗)^(0.359)(D/L)^(−0.026)(G∗)^(−0.335)(ρ∗)^(2.666) is obtained to distinguish the regions of the flow and heat transfer stability and instability.