Idealized numerical simulations have been carried out to reveal the complexity in the development of asymmetric convection in a tropical cyclone(TC)under the influence of an environment with either uniform flow,vertic...Idealized numerical simulations have been carried out to reveal the complexity in the development of asymmetric convection in a tropical cyclone(TC)under the influence of an environment with either uniform flow,vertical wind shear(VWS),or both.Results show that rainwater is enhanced to the right of the motion in the outer rainband,but such enhancement occurs in the upshear-left area of the inner-core region.Additionally,due to the asymmetries introduced by environmental flow,wavenumber-1 temperature and height anomalies develop at a radius of~1000 km in the upper levels.A sub-vortex aside from the TC center encompassing the wavenumber-1 warm center appears,and asymmetric horizontal winds emerge,which,in turn,changes the storm-scale(within 400 km)VWS.Deep convection in the inner core closely follows the changing storm-scale VWS when its magnitude is larger than 2 m s^(-1) and is located downshear of the storm-scale VWS in all the experiments with environmental flow.In the outer rainbands,the maximum boundary layer convergence is mainly controlled by the direction of motion and is located in the rear-right quadrant.These results extend upon the findings of previous studies in three aspects:(1)The discovery of the roughly linear combination effect from the uniform flow and large-scale VWS;(2)The development of upper-level asymmetric winds on a 1000-km scale through the interaction between the TC vortex and environmental flow,resulting in changes in the storm-scale VWS pattern within the TC area;(3)The revelation that TC asymmetric convection closely aligns with the direction-varying storm-scale VWS instead of the initially designated VWS.展开更多
This work studies the impact of the vertical shear of gradient wind (VSGW) in the free atmosphere on the tropical cyclone boundary layer (TCBL). A new TCBL model is established, which relies on five- force balance...This work studies the impact of the vertical shear of gradient wind (VSGW) in the free atmosphere on the tropical cyclone boundary layer (TCBL). A new TCBL model is established, which relies on five- force balance including the pressure gradient force, Coriolis force, centrifugal force, turbulent friction, and inertial deviation force. This model is then employed to idealize tropical cyclones (TCs) produced by DeMaria's model, under different VSGW conditions (non-VSGW, positive VSGW, negative VSGW, and VSGW increase/decrease along the radial direction). The results show that the free-atmosphere VSGW is particularly important to the intensity of TC. For negative VSGW, the total horizontal velocity in the TCBL is somewhat suppressed. However, with the maximum radial inflow displaced upward and outward, the radial velocity notably intensifies. Consequently, the convergence is enhanced throughout the TCBL, giving rise to a stronger vertical pumping at the TCBL top. In contrast, for positive VSGW, the radial inflow is significantly suppressed, even with divergent outflow in the middle-upper TCBL. For varying VSGW along the radial direction, the results indicate that the sign and value of VSGW is more important than its radial distribution, and the negative VSGW induces stronger convergence and Ekman pumping in the TCBL. which favors the formation and intensification of TC.展开更多
By using a linear symmetric Conditional Instability of Second Kind (CISK) model containing basic flow, we study the interactions between basic flow and mesoscale disturbances in typhoon. The result shows that in the...By using a linear symmetric Conditional Instability of Second Kind (CISK) model containing basic flow, we study the interactions between basic flow and mesoscale disturbances in typhoon. The result shows that in the early stage of typhoon formation, the combined action of vertical shear of basic flow at low level and CISK impels the disturbances to grow rapidly and to move toward the center of typhoon. The development of disturbances, likewise, influences on typhoon's development and structure. Analysis of the mesoscale disturbances' development and propagation indicates that the maximum wind region moves toward the center, wind velocity increases, and circulation features of an eye appear. Similarly~ when a typhoon decays, the increase of low-level vertical wind shear facilitates the development of mesoscale disturbances. In turn, these mesoscale disturbances will provide typhoon with energy and make the typhoon intensify again. Therefore, it can be said that typhoon has the renewable or self-repair function.展开更多
The sensitivity of tropical cyclone(TC) intensification to the ambient rotation effect under vertical shear is investigated. The results show that the vortices develop more rapidly with intermediate planetary vortic...The sensitivity of tropical cyclone(TC) intensification to the ambient rotation effect under vertical shear is investigated. The results show that the vortices develop more rapidly with intermediate planetary vorticity, which suggests an optimal latitude for the TC development in the presence of vertical shear. This is different from the previous studies in which no mean flow is considered. It is found that the ambient rotation has two main effects. On the one hand,the boundary layer imbalance is largely controlled by the Coriolis parameter. For TCs at lower latitudes, due to the weaker inertial instability, the boundary inflow is promptly established, which results in a stronger moisture convergence and thus greater diabatic heating in the inner core region. On the other hand, the Coriolis parameter modulates the vertical realignment of the vortex with a higher Coriolis parameter, favoring a quicker vertical realignment and thus a greater potential for TC development. The combination of these two effects results in an optimal latitude for TC intensification in the presence of a vertical shear investigated.展开更多
The probability distributions of wind speeds and the availability of wind turbines were investigated by considering the vertical wind shear. Based on the wind speed data at the standard height observed at a wind farm,...The probability distributions of wind speeds and the availability of wind turbines were investigated by considering the vertical wind shear. Based on the wind speed data at the standard height observed at a wind farm, the power-law process was used to simulate the wind speeds at a hub height of 60 m. The Weibull and Rayleigh distributions were chosen to express the wind speeds at two different heights. The parameters in the model were estimated via the least square(LS) method and the maximum likelihood estimation(MLE) method, respectively. An adjusted MLE approach was also presented for parameter estimation. The main indices of wind energy characteristics were calculated based on observational wind speed data. A case study based on the data of Hexi area, Gansu Province of China was given. The results show that MLE method generally outperforms LS method for parameter estimation, and Weibull distribution is more appropriate to describe the wind speed at the hub height.展开更多
The effects of environmental vertical wind shear (VWS) on the intensity and rainfall asymmetries in Tropical Storm (TS) Bilis (2006) have been analyzed based on TRMM/TMI-estimated surface rainfall data, QuikSCAT...The effects of environmental vertical wind shear (VWS) on the intensity and rainfall asymmetries in Tropical Storm (TS) Bilis (2006) have been analyzed based on TRMM/TMI-estimated surface rainfall data, QuikSCAT wind fields, 850- and 200-hPa winds of the NCEP-NCAR reanalysis, precipitation data at 5-min intervals from automatic weather stations over China's Mainland, and the best track data of TS Bilis (2006). The results show that the simultaneous and 6-hour-lagged correlation coefficients between VWS and storm intensity (the minimum central sea level pressure) are 0.59145 and 0.57438 (P 〈0.01), respectively. The averaged VWS was found to be about 11 m s-1 and thus suppressed the intensification of Bilis (2006). Distribution of precipitation in Bilis (2006) was highly asymmetric. The azimuthally-averaged rainfall rate in the partial eyewall, however, was smaller than that in a major outer rainband. As the storm intensified, the major rainband showed an unusual outward propagation. The VWS had a great impact on the asymmetric distribution of precipitation. Consistent with previous modeling studies, heavy rainfall generally occurred downshear to downshear-left of the VWS vector both near and outside the eyewall, showing a strong wavenumber-one asymmetry, which was amplified as the VWS increased.展开更多
In this study,the effect of vertical wind shear(VWS)on the intensification of tropical cyclone(TC)is investigated via the numerical simulations.Results indicate that weak shear tends to facilitate the development of T...In this study,the effect of vertical wind shear(VWS)on the intensification of tropical cyclone(TC)is investigated via the numerical simulations.Results indicate that weak shear tends to facilitate the development of TC while strong shear appears to inhibit the intensification of TC.As the VWS is imposed on the TC,the vortex of the cyclone tends to tilt vertically and significantly in the upper troposphere.Consequently,the upward motion is considerably enhanced in the downshear side of the storm center and correspondingly,the low-to mid-level potential temperature decreases under the effect of adiabatic cooling,which leads to the increase of the low-to mid-level static instability and relative humidity and then facilitates the burst of convection.In the case of weak shear,the vertical tilting of the vortex is weak and the increase of ascent,static instability and relative humidity occur in the area close to the TC center.Therefore,active convection happens in the TC center region and facilitates the enhancement of vorticity in the inner core region and then the intensification of TC.In contrast,due to strong VWS,the increase of the ascent,static instability and relative humidity induced by the vertical tilting mainly appear in the outer region of TC in the case with stronger shear,and the convection in the inner-core area of TC is rather weak and convective activity mainly happens in the outer-region of the TC.Therefore,the development of a warm core is inhibited and then the intensification of TC is delayed.Different from previous numerical results obtained by imposing VWS suddenly to a strong TC,the simulation performed in this work shows that,even when the VWS is as strong as 12 m s-1,the tropical storm can still experience rapid intensification and finally develop into a strong tropical cyclone after a relatively long period of adjustment.It is found that the convection plays an important role in the adjusting period.On one hand,the convection leads to the horizontal convergence of the low-level vorticity flux and therefore leads to the enhancement of the low-level vorticity in the inner-core area of the cyclone.On the other hand,the active ascent accompanying the convection tends to transport the low-level vorticity to the middle levels.The enhanced vorticity in the lower to middle troposphere strengths the interaction between the low-and mid-level cyclonical circulation and the upper-level circulation deviated from the storm center under the effect of VWS.As a result,the vertical tilting of the vortex is considerably decreased,and then the cyclone starts to develop rapidly.展开更多
The effects of vertical wind shear on tropical cyclone(TC) intensity change are examined based on the TC data from the China Meteorological Administration and the NCEP reanalysis daily data from 2001 to 2006.First,the...The effects of vertical wind shear on tropical cyclone(TC) intensity change are examined based on the TC data from the China Meteorological Administration and the NCEP reanalysis daily data from 2001 to 2006.First,the influence of wind shear between different vertical levels and averages in different horizontal areas are compared.The results indicate that the effect of wind shear between 200 and 850 hPa averaged within a 200-800 km annulus on TC intensity change is larger than any other calculated vertical wind shear.High-latitude and intense TCs tend to be less sensitive to the effects of VWS than low-latitude and weak TCs.TCs experience time lags between the imposition of the shear and the weakening in TC intensity.A vertical shear of 8-9 m/s(9-10 m/s) would weaken TC intensity within 60 h(48 h).A vertical shear greater than 10 m/s would weaken TC intensity within 6 h.Finally,a statistical TC intensity prediction scheme is developed by using partial least squares regression,which produces skillful intensity forecasts when potential predictors include factors related to the vertical wind shear.Analysis of the standardized regression coefficients further confirms the obtained statistical results.展开更多
To study the seismic performance and load-transferring mechanism of an innovative precast shear wall(IPSW) involving vertical joints, an experimental investigation and theoretical analysis were successively conducted ...To study the seismic performance and load-transferring mechanism of an innovative precast shear wall(IPSW) involving vertical joints, an experimental investigation and theoretical analysis were successively conducted on two test walls. The test results confirm the feasibility of the novel joints as well as the favorable seismic performance of the walls, even though certain optimization measures should be taken to improve the ductility. The load-transferring mechanism subsequently is theoretically investigated based on the experimental study. The theoretical results show the load-transferring route of the novel joints is concise and definite. During the elastic stage, the vertical shear stress in the connecting steel frame(CSF) distributes uniformly; and each high-strength bolt(HSB)primarily delivers vertical shear force. However, the stress in the CSF redistributes when the walls develop into the elastic-plastic stage. At the ultimate state, the vertical shear stress and horizontal normal stress in the CSF distribute linearly; and the HSBs at both ends of the CSF transfer the maximum shear forces.展开更多
The effects of vertical wind shear, radiation and ice microphysics on precipitation efficiency (PE) were investigated through analysis of modeling data of a torrential rainfall event over Jinan, China during July 20...The effects of vertical wind shear, radiation and ice microphysics on precipitation efficiency (PE) were investigated through analysis of modeling data of a torrential rainfall event over Jinan, China during July 2007. Vertical wind shear affected PE by changing the kinetic energy conversion between the mean and perturbation circulations. Clou^radiation interaction impacted upon PE, but the relationship related to cloud radiative effects on PE was not statistically significant. The reduction in deposition processes as- sociated with the removal of ice microphysics suppressed efficiency. The relationships related to effects of vertical wind shear, radiation and ice clouds on PEs defined in cloud and surface rainfall budgets were more statistically significant than that defined in the rain microphysical budget.展开更多
Typhoon is regarded as a convergent,modified Rankine vortex.Based on the vorticity equations written at two levels,higher and lower in the troposphere,typhoon motions are discussed in this study.The analytical express...Typhoon is regarded as a convergent,modified Rankine vortex.Based on the vorticity equations written at two levels,higher and lower in the troposphere,typhoon motions are discussed in this study.The analytical expressions of vortex motion direction and speed have been derived for simple homogeneous basic flows at two levels.The expressions indicate that in the easterties,vertical wind shear enhances the steering of east flow, causing the vortex moving westward faster,otherwise,in the westerlies,it reduces the steering of the west flow, causing the vortex moving eastward slower.These results explain theoretically that“cyclones in the easterlies move to the right of,and faster than the basic flow;conversely,cyclones in the westerlies move to the left of,and slower than the basic flow.” With derived baroclinic diagnostic equations and a barotropical model,ten cases from 1980 to 1983 have been calculated for 24h typhoon motions.The results show that the baroclinic models are better than the baro- tropic ones.Therefore,the vertical wind shear is one of the important factors affecting typhoon movement.展开更多
The effect of vertical wind shear(VWS)directions on the change in western North Pacific tropical cyclone(TC)intensity is revisited in this study.Results show that the differences in the correlations between VWS in dif...The effect of vertical wind shear(VWS)directions on the change in western North Pacific tropical cyclone(TC)intensity is revisited in this study.Results show that the differences in the correlations between VWS in different orientations and the change in TC nondimensional intensity highly diminish,although slight differences are still present.The subtle differences in the correlations are likely associated with different synoptic-scale patterns at upper and lower levels.This result suggests that,in addition to thermodynamic effects,dynamic roles of the synoptic-scale patterns associated with the VWS should also be taken into account when the authors examine how VWS in different directions affects TC intensity change.展开更多
This study investigates the effects of vertical wind shear on the torrential rainfall response to the large-scale forcing using a rainfall separation analysis of a pair of two-dimensional cloud-resolving model sensiti...This study investigates the effects of vertical wind shear on the torrential rainfall response to the large-scale forcing using a rainfall separation analysis of a pair of two-dimensional cloud-resolving model sensitivity experiments for a pre-summer heavy rainfall event over southern China from 3-8 June 2008 coupled with National Centers for Environmental Prediction(NCEP)/Global Data Assimilation System(GDAS) data.The rainfall partitioning analysis based on the surface rainfall budget indicates that the exclusion of vertical wind shear decreases the contribution to total rainfall from the largest contributor,which is the rainfall associated with local atmospheric drying,water vapor divergence,and hydrometeor loss/convergence,through the reduction of the rainfall area and reduced rainfall during the rainfall event.The removal of vertical wind shear increases the contribution to total rainfall from the rainfall associated with local atmospheric drying,water vapor convergence,and hydrometeor loss/convergence through the expansion of the rainfall area and enhanced rainfall.The elimination of vertical wind shear enhances heavy rainfall and expands its area,whereas it reduces moderate rainfall and its area.展开更多
The present work provides a novel method for calculating vertical velocity based on continuity equations in a pressure coordinate system.The method overcomes the disadvantage of accumulation of calculating errors of h...The present work provides a novel method for calculating vertical velocity based on continuity equations in a pressure coordinate system.The method overcomes the disadvantage of accumulation of calculating errors of horizontal divergence in current kinematics methods during the integration for calculating vertical velocity,and consequently avoids its subsequent correction.In addition,through modifications of the continuity equations,it shows that the vorticity of the vertical shear vector(VVSV) is proportional to-ω,the vertical velocity in p coordinates.Furthermore,if the change of ω in the horizontal direction is neglected,the vorticity of the horizontal vorticity vector is proportional to-ω.When ω is under a fluctuating state in the vertical direction,the updraft occurs when the vector of horizontal vorticity rotates counterclockwise;the downdraft occurs when rotating clockwise.The validation result indicates that the present method is generally better than the vertical velocity calculated by the ω equation using the wet Q-vector divergence as a forcing term,and the vertical velocity calculated by utilizing the kinematics method is followed by the O'Brien method for correction.The plus-minus sign of the vertical velocity obtained with this method is not correlated with the intensity of d BZ,but the absolute error increases when d BZ is >=40.This method demonstrates that it is a good reflection of the direction of the vertical velocity.展开更多
The characteristics of tropical cyclone(TC) tilts under vertically varying background flows were preliminarily examined in this study based on numerical simulations with the Tropical Cyclone Model version 4(TCM4).The ...The characteristics of tropical cyclone(TC) tilts under vertically varying background flows were preliminarily examined in this study based on numerical simulations with the Tropical Cyclone Model version 4(TCM4).The tilt magnitudes presented a linearly decreasing tendency in the simulation with the environmental wind speed vertically varying throughout the troposphere and in the simulation with the vertical wind shear concentrated in the lower troposphere,while the vortex tilt showed a linearly increasing tendency in magnitude in the simulation where the vertical shear was concentrated in the upper troposphere.The change in tilt magnitude was found to be related to the evolution of the penetration depth near the eyewall.When the shear was concentrated in the lower troposphere,the vortex tended to tilt downshear right during the early integration and underwent more precession processes.When the shear was concentrated in the upper troposphere,the vortex rapidly tilted downshear left during the early simulation and vortex precession was less frequently observed.The storms simulated in all experiments were finally in downshear-left tilt equilibrium.展开更多
In this paper,the authors present the statistical characteristics of the buoyancy of outer-core convective-scale updrafts in numerically simulated sheared tropical cyclones(TCs).The total buoyancy is predominantly pos...In this paper,the authors present the statistical characteristics of the buoyancy of outer-core convective-scale updrafts in numerically simulated sheared tropical cyclones(TCs).The total buoyancy is predominantly positive in weak-to-strong ambient vertical shears,whereas much of the total buoyancy under an extreme shear environment becomes negative.Thermal buoyancy positively contributes to the total buoyancy value.For weakly and moderately sheared TCs,the updraft buoyancy is statistically significantly stronger downshear but smaller upshear.Such a downshear preference of strong buoyancy becomes less evident as the shear magnitude increases.The total buoyancy of updrafts shows a decreasing tendency with radius.Both thermal and dynamic buoyancy do not significantly correlate with vertically averaged vertical mass fluxes.This also leads to no significant correlation between the total buoyancy and vertical mass fluxes of outer-core updrafts.展开更多
In this study,the characteristics of azimuthally asymmetric equivalent potential temperature(θ_(e))distributions in the outer core of tropical cyclones(TCs)encountering weak and strong vertical wind shear are examine...In this study,the characteristics of azimuthally asymmetric equivalent potential temperature(θ_(e))distributions in the outer core of tropical cyclones(TCs)encountering weak and strong vertical wind shear are examined using a Lagrangian trajectory method.Evaporatively forced downdrafts in the outer rainbands can transport low-entropy air downward,resulting in the lowestθ_(e)in the downshear-left boundary layer.Quantitative estimations ofθ_(e)recovery indicate that air parcels,especially those originating from the downshear-left outer core,can gradually revive from a low entropy state through surface enthalpy fluxes as the parcels move cyclonically.As a result,the maximumθ_(e)is observed in the downshear-right quadrant of a highly sheared TC.The trajectory analyses also indicate that parcels that move upward in the outer rainbands and those that travel through the inner core due to shear make a dominant contribution to the midlevel enhancement ofθ_(e)in the downshear-left outer core.In particular,the former plays a leading role in suchθ_(e)enhancements,while the latter plays a secondary role.As a result,moist potential stability occurs in the middle-to-lower troposphere in the downshear-left outer core.展开更多
By using the ground and high-altitude observation data,NCEP 6 h reanalysis data and CINRAD/SA radar observation data,the circulation situation,the atmospheric stability degree and the radar echo characteristics of a s...By using the ground and high-altitude observation data,NCEP 6 h reanalysis data and CINRAD/SA radar observation data,the circulation situation,the atmospheric stability degree and the radar echo characteristics of a strong convection weather which occurred in Nantong area of Jiangsu Province on June 14 in 2009 were analyzed.The results showed that the hailstone happened in the large scale background of coastal trough rear which was established by the northeast low vortex.The warm air in the middle-low layer was covered with the cold air in 500 hPa,which provided the favorable condition for the occurrence of strong convection weather which included the hailstone,the thunderstorm,the strong wind and so on.Seen from the analysis on the radar echo,the windstorm which induced this strong convective weather had the characteristics of super monomer windstorm.In the northwest and the southeast,there were 2 obvious outflow boundaries and the overhanging structure characteristics.The strong vertical shear and the suitable frozen layer height in the middle-low layer of troposphere were also favorable to fall the hailstone.展开更多
Mesoscale eddy activity and its modulation mechanism in the South China Sea (SCS) are inves- tigated with newly reprocessed satellite altimetry observations and hydrographic data. The eddy kinetic energy (EKE) lev...Mesoscale eddy activity and its modulation mechanism in the South China Sea (SCS) are inves- tigated with newly reprocessed satellite altimetry observations and hydrographic data. The eddy kinetic energy (EKE) level of basin-wide averages show a distinct seasonal cycle with the maximum in August-December and the minimum in February-May. Furthermore, the seasonal pattern of EKE in the basin is dominated by region offshore of central Vietnam (OCV), southwest of Taiwan Island (SWT), and southwest of Luzon (SWL), which are also the breeding grounds of mesoscale eddies in the SCS. Instability theory analysis suggests that the seasonal cycle of EKE is modulated by the baroclinic instability of the mean flow. High eddy growth rate (EGR) is found in the active eddy regions. Vertical velocity shear in the upper 50-500 m is crucial for the growth of baroclinic instability, leading to seasonal EKE evolution in the SCS.展开更多
A linear full 3D finite element method (FEM) was performed in order to present the key design parameters of highway tunnel asphalt pavement under double-wheel load on rectangular loaded area considering horizontal con...A linear full 3D finite element method (FEM) was performed in order to present the key design parameters of highway tunnel asphalt pavement under double-wheel load on rectangular loaded area considering horizontal contact stress induced by the acceleration/deceleration of vehicles.The key design parameters are the maximum horizontal tensile stresses at the surface of the asphalt layer,the maximum horizontal tensile stresses at the bottom of the asphalt layer and the maximum vertical shear stresses at the surface of the as- phalt layer were calculated.The influencing factors such as double-wheel weight;asphalt layer thickness;base course stiffness modulus and thickness;and the contact conditions among the structure layers on these key design parameters were also examined separately to propose construction procedures of highway tunnel asphalt pavement.展开更多
基金supported by the National Natural Science Foundation of China(Grant number 42075072)support from The Startup Foundation for Introducing Talent of the Nanjing University of Information Science and Technology.
文摘Idealized numerical simulations have been carried out to reveal the complexity in the development of asymmetric convection in a tropical cyclone(TC)under the influence of an environment with either uniform flow,vertical wind shear(VWS),or both.Results show that rainwater is enhanced to the right of the motion in the outer rainband,but such enhancement occurs in the upshear-left area of the inner-core region.Additionally,due to the asymmetries introduced by environmental flow,wavenumber-1 temperature and height anomalies develop at a radius of~1000 km in the upper levels.A sub-vortex aside from the TC center encompassing the wavenumber-1 warm center appears,and asymmetric horizontal winds emerge,which,in turn,changes the storm-scale(within 400 km)VWS.Deep convection in the inner core closely follows the changing storm-scale VWS when its magnitude is larger than 2 m s^(-1) and is located downshear of the storm-scale VWS in all the experiments with environmental flow.In the outer rainbands,the maximum boundary layer convergence is mainly controlled by the direction of motion and is located in the rear-right quadrant.These results extend upon the findings of previous studies in three aspects:(1)The discovery of the roughly linear combination effect from the uniform flow and large-scale VWS;(2)The development of upper-level asymmetric winds on a 1000-km scale through the interaction between the TC vortex and environmental flow,resulting in changes in the storm-scale VWS pattern within the TC area;(3)The revelation that TC asymmetric convection closely aligns with the direction-varying storm-scale VWS instead of the initially designated VWS.
基金Supported by the National Nature Science Foundation of China(41275057,91215302)Research Fund of the Key Laboratory of Meteorological Disaster of Ministry of Education,Nanjing University of Information Science&Technology(KLME1103)
文摘This work studies the impact of the vertical shear of gradient wind (VSGW) in the free atmosphere on the tropical cyclone boundary layer (TCBL). A new TCBL model is established, which relies on five- force balance including the pressure gradient force, Coriolis force, centrifugal force, turbulent friction, and inertial deviation force. This model is then employed to idealize tropical cyclones (TCs) produced by DeMaria's model, under different VSGW conditions (non-VSGW, positive VSGW, negative VSGW, and VSGW increase/decrease along the radial direction). The results show that the free-atmosphere VSGW is particularly important to the intensity of TC. For negative VSGW, the total horizontal velocity in the TCBL is somewhat suppressed. However, with the maximum radial inflow displaced upward and outward, the radial velocity notably intensifies. Consequently, the convergence is enhanced throughout the TCBL, giving rise to a stronger vertical pumping at the TCBL top. In contrast, for positive VSGW, the radial inflow is significantly suppressed, even with divergent outflow in the middle-upper TCBL. For varying VSGW along the radial direction, the results indicate that the sign and value of VSGW is more important than its radial distribution, and the negative VSGW induces stronger convergence and Ekman pumping in the TCBL. which favors the formation and intensification of TC.
基金Supported by the National Natural Science Foundation of China (41075046)
文摘By using a linear symmetric Conditional Instability of Second Kind (CISK) model containing basic flow, we study the interactions between basic flow and mesoscale disturbances in typhoon. The result shows that in the early stage of typhoon formation, the combined action of vertical shear of basic flow at low level and CISK impels the disturbances to grow rapidly and to move toward the center of typhoon. The development of disturbances, likewise, influences on typhoon's development and structure. Analysis of the mesoscale disturbances' development and propagation indicates that the maximum wind region moves toward the center, wind velocity increases, and circulation features of an eye appear. Similarly~ when a typhoon decays, the increase of low-level vertical wind shear facilitates the development of mesoscale disturbances. In turn, these mesoscale disturbances will provide typhoon with energy and make the typhoon intensify again. Therefore, it can be said that typhoon has the renewable or self-repair function.
基金Supported by the National Natural Science Foundation of China(41575056,41775058,41575043,and 41375095)National(Key)Basic Research and Development(973)Program of China(2015CB452803)+2 种基金National Key Research Project(2017YFA0603802)Key University Science Research Project of Jiangsu Province(14KJA170005)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The sensitivity of tropical cyclone(TC) intensification to the ambient rotation effect under vertical shear is investigated. The results show that the vortices develop more rapidly with intermediate planetary vorticity, which suggests an optimal latitude for the TC development in the presence of vertical shear. This is different from the previous studies in which no mean flow is considered. It is found that the ambient rotation has two main effects. On the one hand,the boundary layer imbalance is largely controlled by the Coriolis parameter. For TCs at lower latitudes, due to the weaker inertial instability, the boundary inflow is promptly established, which results in a stronger moisture convergence and thus greater diabatic heating in the inner core region. On the other hand, the Coriolis parameter modulates the vertical realignment of the vortex with a higher Coriolis parameter, favoring a quicker vertical realignment and thus a greater potential for TC development. The combination of these two effects results in an optimal latitude for TC intensification in the presence of a vertical shear investigated.
基金Project(51165019)supported by the National Natural Science Foundation of ChinaProject(1308RJYA018)supported by Gansu Provincial Natural Science Fund,ChinaProject(2013-4-110)supported by Lanzhou Technology Development Program,China
文摘The probability distributions of wind speeds and the availability of wind turbines were investigated by considering the vertical wind shear. Based on the wind speed data at the standard height observed at a wind farm, the power-law process was used to simulate the wind speeds at a hub height of 60 m. The Weibull and Rayleigh distributions were chosen to express the wind speeds at two different heights. The parameters in the model were estimated via the least square(LS) method and the maximum likelihood estimation(MLE) method, respectively. An adjusted MLE approach was also presented for parameter estimation. The main indices of wind energy characteristics were calculated based on observational wind speed data. A case study based on the data of Hexi area, Gansu Province of China was given. The results show that MLE method generally outperforms LS method for parameter estimation, and Weibull distribution is more appropriate to describe the wind speed at the hub height.
基金supported by the National Natural Science Foundation of China under the Grant Nos.40828005the National Natural Science Foundation of China under the Grant Nos.40921160382+7 种基金the National Natural Science Foundation of China under the Grant Nos.40775060the Key Project of the Ministry of Education of China,Grant No.02109the State Key Basic Research Program 2009CB421500the State Key Basic Research Program 2006BAC02B03the State Key Basic Research Program GYHY200706033supported by National Science Foundation of UAS Grants ATM-0427128National Science Foundation of UAS Grants ATM-0754039the ONR Grant 00014-06-10303
文摘The effects of environmental vertical wind shear (VWS) on the intensity and rainfall asymmetries in Tropical Storm (TS) Bilis (2006) have been analyzed based on TRMM/TMI-estimated surface rainfall data, QuikSCAT wind fields, 850- and 200-hPa winds of the NCEP-NCAR reanalysis, precipitation data at 5-min intervals from automatic weather stations over China's Mainland, and the best track data of TS Bilis (2006). The results show that the simultaneous and 6-hour-lagged correlation coefficients between VWS and storm intensity (the minimum central sea level pressure) are 0.59145 and 0.57438 (P 〈0.01), respectively. The averaged VWS was found to be about 11 m s-1 and thus suppressed the intensification of Bilis (2006). Distribution of precipitation in Bilis (2006) was highly asymmetric. The azimuthally-averaged rainfall rate in the partial eyewall, however, was smaller than that in a major outer rainband. As the storm intensified, the major rainband showed an unusual outward propagation. The VWS had a great impact on the asymmetric distribution of precipitation. Consistent with previous modeling studies, heavy rainfall generally occurred downshear to downshear-left of the VWS vector both near and outside the eyewall, showing a strong wavenumber-one asymmetry, which was amplified as the VWS increased.
基金Natural Science Foundation of China(40921160382,40730948 and 40830958)State Key Basic Program of China(2009CB421502)
文摘In this study,the effect of vertical wind shear(VWS)on the intensification of tropical cyclone(TC)is investigated via the numerical simulations.Results indicate that weak shear tends to facilitate the development of TC while strong shear appears to inhibit the intensification of TC.As the VWS is imposed on the TC,the vortex of the cyclone tends to tilt vertically and significantly in the upper troposphere.Consequently,the upward motion is considerably enhanced in the downshear side of the storm center and correspondingly,the low-to mid-level potential temperature decreases under the effect of adiabatic cooling,which leads to the increase of the low-to mid-level static instability and relative humidity and then facilitates the burst of convection.In the case of weak shear,the vertical tilting of the vortex is weak and the increase of ascent,static instability and relative humidity occur in the area close to the TC center.Therefore,active convection happens in the TC center region and facilitates the enhancement of vorticity in the inner core region and then the intensification of TC.In contrast,due to strong VWS,the increase of the ascent,static instability and relative humidity induced by the vertical tilting mainly appear in the outer region of TC in the case with stronger shear,and the convection in the inner-core area of TC is rather weak and convective activity mainly happens in the outer-region of the TC.Therefore,the development of a warm core is inhibited and then the intensification of TC is delayed.Different from previous numerical results obtained by imposing VWS suddenly to a strong TC,the simulation performed in this work shows that,even when the VWS is as strong as 12 m s-1,the tropical storm can still experience rapid intensification and finally develop into a strong tropical cyclone after a relatively long period of adjustment.It is found that the convection plays an important role in the adjusting period.On one hand,the convection leads to the horizontal convergence of the low-level vorticity flux and therefore leads to the enhancement of the low-level vorticity in the inner-core area of the cyclone.On the other hand,the active ascent accompanying the convection tends to transport the low-level vorticity to the middle levels.The enhanced vorticity in the lower to middle troposphere strengths the interaction between the low-and mid-level cyclonical circulation and the upper-level circulation deviated from the storm center under the effect of VWS.As a result,the vertical tilting of the vortex is considerably decreased,and then the cyclone starts to develop rapidly.
基金National Natural Science Foundation of China(41405060,41475082,41305049,41275067,41475059)
文摘The effects of vertical wind shear on tropical cyclone(TC) intensity change are examined based on the TC data from the China Meteorological Administration and the NCEP reanalysis daily data from 2001 to 2006.First,the influence of wind shear between different vertical levels and averages in different horizontal areas are compared.The results indicate that the effect of wind shear between 200 and 850 hPa averaged within a 200-800 km annulus on TC intensity change is larger than any other calculated vertical wind shear.High-latitude and intense TCs tend to be less sensitive to the effects of VWS than low-latitude and weak TCs.TCs experience time lags between the imposition of the shear and the weakening in TC intensity.A vertical shear of 8-9 m/s(9-10 m/s) would weaken TC intensity within 60 h(48 h).A vertical shear greater than 10 m/s would weaken TC intensity within 6 h.Finally,a statistical TC intensity prediction scheme is developed by using partial least squares regression,which produces skillful intensity forecasts when potential predictors include factors related to the vertical wind shear.Analysis of the standardized regression coefficients further confirms the obtained statistical results.
基金Project(51078077)supported by the National Natural Science Foundation of China
文摘To study the seismic performance and load-transferring mechanism of an innovative precast shear wall(IPSW) involving vertical joints, an experimental investigation and theoretical analysis were successively conducted on two test walls. The test results confirm the feasibility of the novel joints as well as the favorable seismic performance of the walls, even though certain optimization measures should be taken to improve the ductility. The load-transferring mechanism subsequently is theoretically investigated based on the experimental study. The theoretical results show the load-transferring route of the novel joints is concise and definite. During the elastic stage, the vertical shear stress in the connecting steel frame(CSF) distributes uniformly; and each high-strength bolt(HSB)primarily delivers vertical shear force. However, the stress in the CSF redistributes when the walls develop into the elastic-plastic stage. At the ultimate state, the vertical shear stress and horizontal normal stress in the CSF distribute linearly; and the HSBs at both ends of the CSF transfer the maximum shear forces.
基金supported by projects of the National Natural Sciences Foundation of China(Grant Nos.41075044,41275065,and 41075079)
文摘The effects of vertical wind shear, radiation and ice microphysics on precipitation efficiency (PE) were investigated through analysis of modeling data of a torrential rainfall event over Jinan, China during July 2007. Vertical wind shear affected PE by changing the kinetic energy conversion between the mean and perturbation circulations. Clou^radiation interaction impacted upon PE, but the relationship related to cloud radiative effects on PE was not statistically significant. The reduction in deposition processes as- sociated with the removal of ice microphysics suppressed efficiency. The relationships related to effects of vertical wind shear, radiation and ice clouds on PEs defined in cloud and surface rainfall budgets were more statistically significant than that defined in the rain microphysical budget.
文摘Typhoon is regarded as a convergent,modified Rankine vortex.Based on the vorticity equations written at two levels,higher and lower in the troposphere,typhoon motions are discussed in this study.The analytical expressions of vortex motion direction and speed have been derived for simple homogeneous basic flows at two levels.The expressions indicate that in the easterties,vertical wind shear enhances the steering of east flow, causing the vortex moving westward faster,otherwise,in the westerlies,it reduces the steering of the west flow, causing the vortex moving eastward slower.These results explain theoretically that“cyclones in the easterlies move to the right of,and faster than the basic flow;conversely,cyclones in the westerlies move to the left of,and slower than the basic flow.” With derived baroclinic diagnostic equations and a barotropical model,ten cases from 1980 to 1983 have been calculated for 24h typhoon motions.The results show that the baroclinic models are better than the baro- tropic ones.Therefore,the vertical wind shear is one of the important factors affecting typhoon movement.
基金This work was jointly supported by the National Key Research and Development Program of China[grant numbers 2018YFC1507103 and 2017YFC1501601]the Key Program of the Ministry of Science and Technology of China[grant number 2017YFE0107700]National Natural Science Foundation of China[grant numbers 41875054,41730961,41730960,and 41775065].
文摘The effect of vertical wind shear(VWS)directions on the change in western North Pacific tropical cyclone(TC)intensity is revisited in this study.Results show that the differences in the correlations between VWS in different orientations and the change in TC nondimensional intensity highly diminish,although slight differences are still present.The subtle differences in the correlations are likely associated with different synoptic-scale patterns at upper and lower levels.This result suggests that,in addition to thermodynamic effects,dynamic roles of the synoptic-scale patterns associated with the VWS should also be taken into account when the authors examine how VWS in different directions affects TC intensity change.
基金supported by the National Key Basic Research and Development Project of China under Grant 2011CB403405the Chinese Special Scientific Research Project for Public Interest under Grant GYHY200806009+1 种基金the National Natural Science Foundation of China under Grants 41075039 and 41175065the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘This study investigates the effects of vertical wind shear on the torrential rainfall response to the large-scale forcing using a rainfall separation analysis of a pair of two-dimensional cloud-resolving model sensitivity experiments for a pre-summer heavy rainfall event over southern China from 3-8 June 2008 coupled with National Centers for Environmental Prediction(NCEP)/Global Data Assimilation System(GDAS) data.The rainfall partitioning analysis based on the surface rainfall budget indicates that the exclusion of vertical wind shear decreases the contribution to total rainfall from the largest contributor,which is the rainfall associated with local atmospheric drying,water vapor divergence,and hydrometeor loss/convergence,through the reduction of the rainfall area and reduced rainfall during the rainfall event.The removal of vertical wind shear increases the contribution to total rainfall from the rainfall associated with local atmospheric drying,water vapor convergence,and hydrometeor loss/convergence through the expansion of the rainfall area and enhanced rainfall.The elimination of vertical wind shear enhances heavy rainfall and expands its area,whereas it reduces moderate rainfall and its area.
基金National Key Basic Research Development Program"973"(2013CB430103,2009CB421503)National Natural Science Funding(41375058,41530427)State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences(2015LASW-A07)
文摘The present work provides a novel method for calculating vertical velocity based on continuity equations in a pressure coordinate system.The method overcomes the disadvantage of accumulation of calculating errors of horizontal divergence in current kinematics methods during the integration for calculating vertical velocity,and consequently avoids its subsequent correction.In addition,through modifications of the continuity equations,it shows that the vorticity of the vertical shear vector(VVSV) is proportional to-ω,the vertical velocity in p coordinates.Furthermore,if the change of ω in the horizontal direction is neglected,the vorticity of the horizontal vorticity vector is proportional to-ω.When ω is under a fluctuating state in the vertical direction,the updraft occurs when the vector of horizontal vorticity rotates counterclockwise;the downdraft occurs when rotating clockwise.The validation result indicates that the present method is generally better than the vertical velocity calculated by the ω equation using the wet Q-vector divergence as a forcing term,and the vertical velocity calculated by utilizing the kinematics method is followed by the O'Brien method for correction.The plus-minus sign of the vertical velocity obtained with this method is not correlated with the intensity of d BZ,but the absolute error increases when d BZ is >=40.This method demonstrates that it is a good reflection of the direction of the vertical velocity.
基金jointly supported by the National(Key)Basic Research and Development(973)Program of China(No.2015CB452803)the National Natural Science Foundation of China(Nos.41475058 and 41375068)+1 种基金the Open Project of the State Key Laboratory of Severe Weather(No.2016LASW-B08)the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP)
文摘The characteristics of tropical cyclone(TC) tilts under vertically varying background flows were preliminarily examined in this study based on numerical simulations with the Tropical Cyclone Model version 4(TCM4).The tilt magnitudes presented a linearly decreasing tendency in the simulation with the environmental wind speed vertically varying throughout the troposphere and in the simulation with the vertical wind shear concentrated in the lower troposphere,while the vortex tilt showed a linearly increasing tendency in magnitude in the simulation where the vertical shear was concentrated in the upper troposphere.The change in tilt magnitude was found to be related to the evolution of the penetration depth near the eyewall.When the shear was concentrated in the lower troposphere,the vortex tended to tilt downshear right during the early integration and underwent more precession processes.When the shear was concentrated in the upper troposphere,the vortex rapidly tilted downshear left during the early simulation and vortex precession was less frequently observed.The storms simulated in all experiments were finally in downshear-left tilt equilibrium.
基金supported by the National Key Research and Development Program of China [grant numbers 2017YFC1501601 and 2015CB452803]the National Natural Science Foundation of China [grant numbers41475058,41730961,and 41875054]+1 种基金the Basic Research Fund of the Chinese Academy of Meteorological Sciences[grant number 2016Z003]the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP)
文摘In this paper,the authors present the statistical characteristics of the buoyancy of outer-core convective-scale updrafts in numerically simulated sheared tropical cyclones(TCs).The total buoyancy is predominantly positive in weak-to-strong ambient vertical shears,whereas much of the total buoyancy under an extreme shear environment becomes negative.Thermal buoyancy positively contributes to the total buoyancy value.For weakly and moderately sheared TCs,the updraft buoyancy is statistically significantly stronger downshear but smaller upshear.Such a downshear preference of strong buoyancy becomes less evident as the shear magnitude increases.The total buoyancy of updrafts shows a decreasing tendency with radius.Both thermal and dynamic buoyancy do not significantly correlate with vertically averaged vertical mass fluxes.This also leads to no significant correlation between the total buoyancy and vertical mass fluxes of outer-core updrafts.
基金jointly supported by the National Key Research and Development Program of China under Grant No. 2017YFC1501601the National Natural Science Foundation of China under Grant Nos. 42175005 and 41875054
文摘In this study,the characteristics of azimuthally asymmetric equivalent potential temperature(θ_(e))distributions in the outer core of tropical cyclones(TCs)encountering weak and strong vertical wind shear are examined using a Lagrangian trajectory method.Evaporatively forced downdrafts in the outer rainbands can transport low-entropy air downward,resulting in the lowestθ_(e)in the downshear-left boundary layer.Quantitative estimations ofθ_(e)recovery indicate that air parcels,especially those originating from the downshear-left outer core,can gradually revive from a low entropy state through surface enthalpy fluxes as the parcels move cyclonically.As a result,the maximumθ_(e)is observed in the downshear-right quadrant of a highly sheared TC.The trajectory analyses also indicate that parcels that move upward in the outer rainbands and those that travel through the inner core due to shear make a dominant contribution to the midlevel enhancement ofθ_(e)in the downshear-left outer core.In particular,the former plays a leading role in suchθ_(e)enhancements,while the latter plays a secondary role.As a result,moist potential stability occurs in the middle-to-lower troposphere in the downshear-left outer core.
基金Supported by Jiangsu Province Important Science Technology Support and Independent Innovation Demonstration Project (BE2008618)
文摘By using the ground and high-altitude observation data,NCEP 6 h reanalysis data and CINRAD/SA radar observation data,the circulation situation,the atmospheric stability degree and the radar echo characteristics of a strong convection weather which occurred in Nantong area of Jiangsu Province on June 14 in 2009 were analyzed.The results showed that the hailstone happened in the large scale background of coastal trough rear which was established by the northeast low vortex.The warm air in the middle-low layer was covered with the cold air in 500 hPa,which provided the favorable condition for the occurrence of strong convection weather which included the hailstone,the thunderstorm,the strong wind and so on.Seen from the analysis on the radar echo,the windstorm which induced this strong convective weather had the characteristics of super monomer windstorm.In the northwest and the southeast,there were 2 obvious outflow boundaries and the overhanging structure characteristics.The strong vertical shear and the suitable frozen layer height in the middle-low layer of troposphere were also favorable to fall the hailstone.
基金The National Natural Science Foundation of China under contract No.41076011,40531006,41106024 and40976014the National Basic Research Program of China under contract No.2011CB403600
文摘Mesoscale eddy activity and its modulation mechanism in the South China Sea (SCS) are inves- tigated with newly reprocessed satellite altimetry observations and hydrographic data. The eddy kinetic energy (EKE) level of basin-wide averages show a distinct seasonal cycle with the maximum in August-December and the minimum in February-May. Furthermore, the seasonal pattern of EKE in the basin is dominated by region offshore of central Vietnam (OCV), southwest of Taiwan Island (SWT), and southwest of Luzon (SWL), which are also the breeding grounds of mesoscale eddies in the SCS. Instability theory analysis suggests that the seasonal cycle of EKE is modulated by the baroclinic instability of the mean flow. High eddy growth rate (EGR) is found in the active eddy regions. Vertical velocity shear in the upper 50-500 m is crucial for the growth of baroclinic instability, leading to seasonal EKE evolution in the SCS.
文摘A linear full 3D finite element method (FEM) was performed in order to present the key design parameters of highway tunnel asphalt pavement under double-wheel load on rectangular loaded area considering horizontal contact stress induced by the acceleration/deceleration of vehicles.The key design parameters are the maximum horizontal tensile stresses at the surface of the asphalt layer,the maximum horizontal tensile stresses at the bottom of the asphalt layer and the maximum vertical shear stresses at the surface of the as- phalt layer were calculated.The influencing factors such as double-wheel weight;asphalt layer thickness;base course stiffness modulus and thickness;and the contact conditions among the structure layers on these key design parameters were also examined separately to propose construction procedures of highway tunnel asphalt pavement.