Vertical backfill drill-hole is usually a key project in an underground mine with backfill method and can be easily damaged by impact of backfill slurry.Observation of the damaged vertical backfill drill-holes in Jinc...Vertical backfill drill-hole is usually a key project in an underground mine with backfill method and can be easily damaged by impact of backfill slurry.Observation of the damaged vertical backfill drill-holes in Jinchuan Nonferrous Metal Corporation(JNMC),Gansu Province,China,given by a digital drill-hole video camera,indicated that there usually exist serious wear zones in casing pipe in vertical backfill drill-hole(CVBH).It was suggested that serious wear position of CVBH should be located at an interface between air and solid-liquid mixture within CVBH.Backfill slurry falls freely and impacts the wall of CVBH near the interface with great momentum and energy coming from high speed free fall of backfill slurry.The depth of serious wear position of CVBH,i.e.,free fall height of backfill slurry in CVBH,can be estimated by the height of vertical backfill drill-hole,the length of horizontal pipeline,the density of slurry and the hydraulic gradient of pipeline system.A case study indicated that the estimation equation of serious damage depth of CVBH was of enough accuracy and was helpful for daily maintenance and management of vertical backfill drill-hole.展开更多
Polycrystalline diamond compact(PDC)drill bit often performs with low ROP,short service life and poor stability under complicated and difficult to drill formations.Therefore,a vertical wheel PDC bit is proposed,which ...Polycrystalline diamond compact(PDC)drill bit often performs with low ROP,short service life and poor stability under complicated and difficult to drill formations.Therefore,a vertical wheel PDC bit is proposed,which is a new drill bit technology applying an integrated unit combining the tooth wheel and the rotary shaft thereof.Besides,the experiments on motion and mechanical characteristics of the vertical wheel under the conditions of tooth shape and number of teeth,normal deflection angle of the wheel,and different cutting depth were carried out using variable parameter experimental device,and the movement,force law,and crushing specific work of vertical wheel under different experimental conditions were obtained.The comparative experiments of PDC cutting rock breaking under the conditions of parallel cutting of PDC unit and pre-damage of the wheel were also carried out,and the cutting load of PDC teeth under pre-damage conditions is between 38.72% and 70.95%lower than that of parallel cutting was obtained.Finally,a comparative experiment of indoor drilling between vertical wheel PDC bit and conventional PDC bit was carried out.Results show than when drilling in gravel rock,under the same WOB,the torque response of vertical wheel PDC bit is equivalent to that of the PDC bit,while the ROP of vertical wheel PDC bit is 22.94%-53.33% higher than that of conventional PDC bit,and the threedimensional acceleration of the vertical wheel PDC bit is 19.17%-76.23% of that of the PDC bit.The experimental results contribute to a better understanding of vertical wheels and provide technical support for their use in PDC bits.展开更多
Performance analysis and kinematic design of the 3-PUU pure translational parallel mechanism with vertical guide-ways are investigated. Two novel performance indices, the critical slider stroke and the main section ar...Performance analysis and kinematic design of the 3-PUU pure translational parallel mechanism with vertical guide-ways are investigated. Two novel performance indices, the critical slider stroke and the main section area of workspace, are defined; The expressions of two other indices, i.e. the global dexterity and global force transfer ratio are revised based on the main section of workspace. Using these indices, performance changes versus the varieties of dimensional parameters of mechanism are investigated in detail and the graphic descriptions of change tendencies of the performance indices are illustrated. By means of these obtained graphic descriptions, kinematic parameters for the 3-PUU pure translational parallel mechanism with better characteristics can be directly acquired.展开更多
To solve the problem of water seepage of vertical feeding borehole for solid materials,we established the fluid-solid coupling dynamic model of groundwater flowing in rock mass adjacent to the vertical feeding borehol...To solve the problem of water seepage of vertical feeding borehole for solid materials,we established the fluid-solid coupling dynamic model of groundwater flowing in rock mass adjacent to the vertical feeding borehole.Combining with the engineering geological conditions,we built a numeral model to study the influence rule of the aquifer hydraulic pressure and seepage location of feeding borehole on the amount of seepage with fnite element numerical method.The results show that the nonlinear relationship is presented among the amount of seepage,the seepage location and aquifer hydraulic pressure.The higher the aquifer hydraulic pressure is,the closer the distance between seepage location and aquifer is,and the faster the harmful levels of aquifer will grow.In practice,we calculated the allowable seepage of feeding borehole by the optimum moisture content and natural moisture content of backflling materials,and then determined the protection zone of feeding borehole,so the moisture content of backflling materials can be controlled within the scope of optimum moisture content.展开更多
This paper comprehensively introduces a new magnesium production technology the compound-vertical-retort technology, involving in the related fundamental researches, core equipment development, working flow, and techn...This paper comprehensively introduces a new magnesium production technology the compound-vertical-retort technology, involving in the related fundamental researches, core equipment development, working flow, and technical characteristics. Scale-up test and an annual1200-ton-magnesium demonstration-level test was conducted to confirm the rationality, reliability, and advancement of the equipment, system and process design. It is indicated that the new technology solved a series of problems of traditional silicothermic process including adhesion and glaze, short life of retort, low efficiency, high impurity of crystallized magnesium, large heat losses, and poor working environment,making a great technological breakthrough in this field. Representatively, the new well-designed ceramic-lined steel retort serves 2~3 times in life than the normal retorts. The magnesium yield per retort is improved 4~5 times, with purity of >99.8%. The energy consumption in reduction stage is reduced by more than 20%. The mechanical production is fully realized and operating environment is significantly improved.展开更多
The finite element analysis was carried out for a composite vertical axis wind turbine with lift-drag combined starting structures to ensure the structure safety of a vertical axis wind turbine(VAWT).The static and mo...The finite element analysis was carried out for a composite vertical axis wind turbine with lift-drag combined starting structures to ensure the structure safety of a vertical axis wind turbine(VAWT).The static and modal analysis of rotor of a composite vertical axis wind turbine was conducted by using ANSYS software.The relevant contour sketch of stress and deformation was obtained.The analysis was made for static structural mechanics,modal analysis of rotor and the total deformation and vibration profile to evaluate the influence on the working capability of the rotor.The analysis results show that the various structure parameters lie in the safety range of structural mechanics in the relative standards.The analysis showing the design safe to operate the rotor of a vertical axis wind turbine.The methods used in this study can be used as a good reference for the structural mechanics′analysis of VAWTs.展开更多
In the paper the three-dimensional flow fields are numerically simulated in the vertical-shaft mechanical mix tank of a water treatment plant by means of FLUENT software based on the method of Computational Fluid Dyna...In the paper the three-dimensional flow fields are numerically simulated in the vertical-shaft mechanical mix tank of a water treatment plant by means of FLUENT software based on the method of Computational Fluid Dynamics (CFD). The influences of design parameters on flow fields and the mixing effect are analyzed. Firstly,the prediction capability of the turbulence model adopted in simulations is evaluated. And then,the mesh independence is checked up. Finally,the flow fields in various dimensionless blade diameters and dimensionless shaft spans are numerically simulated respectively. The results have shown that the numerical simulation method based on CFD is a feasible assistance for the optimal designs of mixers. Moreover,the optimal design of the blade diameter should take into account both the flow field and the power consumption. The optimization of the shaft span is to achieve a relatively even distribution of the flow field without any rupture. With the consideration of an optimal design,the dimensionless blade diameter and dimensionless shaft span should be 0.45 and 0.57 respectively in the case.展开更多
The unsteady hydrodynamic characteristics of vertical axis tidal turbine are investigated by numerical simulation based on viscous CFD method. The starting mechanism of the turbine is revealed through analyzing the in...The unsteady hydrodynamic characteristics of vertical axis tidal turbine are investigated by numerical simulation based on viscous CFD method. The starting mechanism of the turbine is revealed through analyzing the interaction of its motion and dynamics during starting process. The operating hydrodynamic characteristics of the turbine in wave-current condition are also explored by combining with the linear wave theory. According to possible magnification of the cyclic loads in the maximum power tracking control of vertical axis turbine, a novel torque control strategy is put forward, which can improve the structural characteristics significantly without effecting energy efficiency.展开更多
A comprehensive protective structure with rigidity and flexibility was put forward and designed in view of the quality and safety problems for the double vertical explosive welding of large titanium/steel cladding pla...A comprehensive protective structure with rigidity and flexibility was put forward and designed in view of the quality and safety problems for the double vertical explosive welding of large titanium/steel cladding plate.The movement speed and displacement of the protective structure was calculated by establishing its physics model.The dynamics and stabilization properties were analyzed,and the protective structure parameters were optimized and devised.The comprehensive protective structure,which is composed of rigidity unit and flexibility wall,can bear the impact of detonation wave and the high-speed movement of the cladding plate.There are no damage and deformation in the protective structure and the cladding plate.The protective structure can be used many times.The bonding rate of the Ti/steel plate obtained was nearly 100%,and there is no deformation,surface cracks,and big wave and micro-defects.Therefore,the protective problems of the double vertical explosive welding can be solved effectively by the protective structure.展开更多
Copper cladding aluminum(CCA)rods with the section dimensions of12mm in diameter and2mm in sheath thickness were fabricated by vertical core-filling continuous casting(VCFC)technology.The kinds and morphology of inter...Copper cladding aluminum(CCA)rods with the section dimensions of12mm in diameter and2mm in sheath thickness were fabricated by vertical core-filling continuous casting(VCFC)technology.The kinds and morphology of interfacial intermetallic compounds(IMCs)were investigated by SEM,XRD and TEM.The results showed that the interfacial structure of Cu/Al was mainly composed of layeredγ1(Cu9Al4),cellularθ(CuAl2),andα(Al)+θ(CuAl2)phases.Moreover,residual acicularε2(Cu3Al2+x)phase was observed at the Cu/Al interface.By comparing the driving force of formation forε2(Cu3Al2+x)andγ1(Cu9Al4)phases,the conclusion was drawn that theε2(Cu3Al2+x)formed firstly at the Cu/Al interface.In addition,the interfacial formation mechanism of copper cladding aluminum composites was revealed completely.展开更多
The horizontal and vertical distribution patterns of five planktonic copepods, Calanus sinicus, Acartia pacifica, Tortanus derjugini, Acartiella sinensis and Pseudodiaptomus poplesia, predominant in the Jiulong Estuar...The horizontal and vertical distribution patterns of five planktonic copepods, Calanus sinicus, Acartia pacifica, Tortanus derjugini, Acartiella sinensis and Pseudodiaptomus poplesia, predominant in the Jiulong Estuary, were investigated from May 2003 to April 2004. The results showed that the distribution of these copepods was related to the tidal period but that each species had its own specific pattern. C. sinicus showed no tidal vertical migration behavior and was thought to be a non-resident species in this estuary. Among Acartia pacifica, T. derjugini,Acartiella sinensis, more individuals occurred in the surface than in the bottom waters during flood tide, and the pattern was reversed during ebb tide. The epibenthic copepod P. poplesia usually remained in the bottom waters in the upstream part of the estuary, but it displayed strong tidally-oriented vertical migration in the middle reaches of the estuary. Taking into account the hydrographic characteristics of the Jiulong Estuary, it was hypothesized that the planktonic copepods in this estuary had more or less adopted the mechanism of vertically migrating to the surface waters during flood tide in order to make use of the inflowing tide, and then sinking to the bottom during ebb tide to avoid being carried out of the estuary by net outflow.展开更多
Micropiles are drilled and grouted piles having diameter between 100 to 250 mm. Due to its small diameter, it is suitable for low headroom and limited work area conditions. It can be installed without noise nuisance, ...Micropiles are drilled and grouted piles having diameter between 100 to 250 mm. Due to its small diameter, it is suitable for low headroom and limited work area conditions. It can be installed without noise nuisance, without vibrations to surrounding soils and structures and without disruption to the production operations in industries which makes micropiles suitable for underpinning and seismic retrofitting of structures. It is necessary to therefore understand the behaviour of micropiles under different loading conditions. This work is on vertical and battered micropiles with different length/diameter ratio (L/D) subjected to vertical and lateral loading conditions. Batter angles had a significant influence on both the vertical and lateral load carrying capacity. The ultimate vertical load was found to increase upto a 30°batter. The ultimate lateral load was found to increase significantly with increasing L/D ratios upto an L/D ratio of 30 for vertical and 48 for battered piles, beyond which the increase was found to be not significant. In general, negative battered micropiles offered more lateral resistance than positive battered micropiles. The results of the study indicated that the ultimate load capacity and mode of failure of the micropiles are a function of the angle of batter, direction of batter and the L/D ratio for vertically and laterally loaded micropiles.展开更多
A combined experimental and numerical investigation is carried out to study the performance of a vertical-axis eccentric-disc variable-pitch turbine(VEVT).A scheme of eccentric disc pitch control mechanism based on do...A combined experimental and numerical investigation is carried out to study the performance of a vertical-axis eccentric-disc variable-pitch turbine(VEVT).A scheme of eccentric disc pitch control mechanism based on doubleblock mechanism is proposed.The eccentric control mechanism and the deflection angle control mechanism in the pitch control structure are designed and optimized according to the functional requirements of the turbine,and the three-dimensional model of the turbine is established.Kinematics analysis of the eccentric disc pitch control mechanism is carried out.Kinematics parameters and kinematics equations which can characterize its motion characteristics are derived.Kinematics analysis and simulation are carried out,and the motion law of the corresponding mechanical system is obtained.By analyzing the force and motion of blade of VEVT,the expressions of the important parameters such as deflection angle,attack angle and energy utilization coefficient are obtained.The lateral induced velocity coefficient is acquired by momentum theorem,the hydrodynamic parameters such as energy utilization coefficient are derived,and the hydrodynamic characteristics of VEVT are also obtained.The experimental results show that the turbine has good energy capture capability at different inflow velocities of different sizes and directions,which verifies that VEVT has good self-startup performance and high energy capture efficiency.展开更多
It is illustrated that there exists an inflection circle on the linkage rigid body by the principle of relative motion. Confirmed methods of the inflection circle, curvature radius and curvature center of the point tr...It is illustrated that there exists an inflection circle on the linkage rigid body by the principle of relative motion. Confirmed methods of the inflection circle, curvature radius and curvature center of the point track on the linkage rigid body are given in the case of the different contact type of move instantaneous center line and static instantaneous center line. The regularity of distribution of curvature radius and curvature center of the point track is researched. The identification methods called determination parameters and auxiliary vertical line of the diameter and direction of the inflection circle in the four bar mechanism are pointed out. A design method of the crane hoisting mechanism is discussed in the end of this paper.展开更多
A linear diagnostic equation for the nonhydrostatic vertical motion W in severe storms is derived in the Cartesian-earth-spherical coordinates. This W diagnostic equation reveals explicitly how forcing factors work to...A linear diagnostic equation for the nonhydrostatic vertical motion W in severe storms is derived in the Cartesian-earth-spherical coordinates. This W diagnostic equation reveals explicitly how forcing factors work together to exert influence on the nonhydrostatic vertical motion in severe storms. If high-resolution global data are available in Cartesian coordinates with guaranteed quality, the Lax-Crank-Nicolson scheme and the Thomas algorithm might provide a promising numerical solution of this diagnostic equation. As a result, quantitative analyses are expected for the evolution mechanisms of severe storms.展开更多
The introduction of blockchain to federated learning(FL)is a promising solution to enable anonymous clients to collaboratively learn a shared prediction model using local data while avoiding the risk caused by the cen...The introduction of blockchain to federated learning(FL)is a promising solution to enable anonymous clients to collaboratively learn a shared prediction model using local data while avoiding the risk caused by the central server.However,the current researches only apply a shallow convergence between the two technologies.The aroused problems,such as the unsuitable consensus,the lack of incentive mechanism,and the incompetence of handling vertically partitioned data,make the blockchain-based FL exist in name only.This paper puts forward a novel blockchain-based framework for vertical FL with a specified consensus and incentive.Moreover,a real-world example is demonstrated to prove the practicability of our work.展开更多
The purpose of this paper is to investigate the performance improvement mechanism of a high power vertical centrifugal pump by using numerical calculations.Therefore,a comparative study of energy losses and internal f...The purpose of this paper is to investigate the performance improvement mechanism of a high power vertical centrifugal pump by using numerical calculations.Therefore,a comparative study of energy losses and internal flow characteristics in the original and optimized models was carried out with special attention to the hydraulic component matching.The optimized model(model B)was obtained by optimizing the vaned diffuser and volute based on the original model(model A),mainly the diffuser inlet diameter,diffuser inlet vane angle,volute channel inlet width and volute throat area were changed.Firstly,the comparative results on performance and energy losses of two models showed that the efficiency and head of model B was significantly increased under design and part-load conditions.It is mainly due to the dramatic reduction of energy loss PL in the diffuser and volute.Then,the comparisons of PL and flow patterns in the vaned diffuser showed that the matching optimization between the model B impeller outlet flow angle and diffuser inlet vane angle resulted in a better flow pattern in both the circumferential and axial directions of the diffuser,which leads to the PL3 reduction.The meridian velocity Vm of model B was significantly increased at diffuser inlet regions and resulted in improvements of flow patterns at diffuser middle and outlet regions as well as pressure expansion capacity.Finally,the comparisons of PL and flow characteristics in the volute showed that the turbulence loss reduction in the model B volute was due to the flow pattern improvement at diffuser outlet regions which provided better flow conditions at volute inlet regions.The matching optimization between the diffuser and volute significantly reduced the turbulence loss in volute sections 1–4 and enhanced the pressure expansion capacity in sections 8–10.展开更多
基金Project (2008BAB32B03) supported by the National Key Technology Research and Development Program,China
文摘Vertical backfill drill-hole is usually a key project in an underground mine with backfill method and can be easily damaged by impact of backfill slurry.Observation of the damaged vertical backfill drill-holes in Jinchuan Nonferrous Metal Corporation(JNMC),Gansu Province,China,given by a digital drill-hole video camera,indicated that there usually exist serious wear zones in casing pipe in vertical backfill drill-hole(CVBH).It was suggested that serious wear position of CVBH should be located at an interface between air and solid-liquid mixture within CVBH.Backfill slurry falls freely and impacts the wall of CVBH near the interface with great momentum and energy coming from high speed free fall of backfill slurry.The depth of serious wear position of CVBH,i.e.,free fall height of backfill slurry in CVBH,can be estimated by the height of vertical backfill drill-hole,the length of horizontal pipeline,the density of slurry and the hydraulic gradient of pipeline system.A case study indicated that the estimation equation of serious damage depth of CVBH was of enough accuracy and was helpful for daily maintenance and management of vertical backfill drill-hole.
基金This work was supported by the open fund project of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation in 2021(Grant No.PLN2021-18)City-school Science and Technology Strategic Cooperation Project of Nanchong City and Southwest Petroleum University(Grant No.SXHZ014)Postdoctoral Science Foundation of China(Grant No.2021M693909).
文摘Polycrystalline diamond compact(PDC)drill bit often performs with low ROP,short service life and poor stability under complicated and difficult to drill formations.Therefore,a vertical wheel PDC bit is proposed,which is a new drill bit technology applying an integrated unit combining the tooth wheel and the rotary shaft thereof.Besides,the experiments on motion and mechanical characteristics of the vertical wheel under the conditions of tooth shape and number of teeth,normal deflection angle of the wheel,and different cutting depth were carried out using variable parameter experimental device,and the movement,force law,and crushing specific work of vertical wheel under different experimental conditions were obtained.The comparative experiments of PDC cutting rock breaking under the conditions of parallel cutting of PDC unit and pre-damage of the wheel were also carried out,and the cutting load of PDC teeth under pre-damage conditions is between 38.72% and 70.95%lower than that of parallel cutting was obtained.Finally,a comparative experiment of indoor drilling between vertical wheel PDC bit and conventional PDC bit was carried out.Results show than when drilling in gravel rock,under the same WOB,the torque response of vertical wheel PDC bit is equivalent to that of the PDC bit,while the ROP of vertical wheel PDC bit is 22.94%-53.33% higher than that of conventional PDC bit,and the threedimensional acceleration of the vertical wheel PDC bit is 19.17%-76.23% of that of the PDC bit.The experimental results contribute to a better understanding of vertical wheels and provide technical support for their use in PDC bits.
基金This project is supported by National Natural Science Foundation of China (No.60275031)Municipal Key Lab Open Fund of Beijing, China (No.KP01-072200384).
文摘Performance analysis and kinematic design of the 3-PUU pure translational parallel mechanism with vertical guide-ways are investigated. Two novel performance indices, the critical slider stroke and the main section area of workspace, are defined; The expressions of two other indices, i.e. the global dexterity and global force transfer ratio are revised based on the main section of workspace. Using these indices, performance changes versus the varieties of dimensional parameters of mechanism are investigated in detail and the graphic descriptions of change tendencies of the performance indices are illustrated. By means of these obtained graphic descriptions, kinematic parameters for the 3-PUU pure translational parallel mechanism with better characteristics can be directly acquired.
基金funded by the State Key Development Program for Basic Research of China(No.2013CB227900)the National High Technology Joint Research Program of China(No.2012BAB13B00)
文摘To solve the problem of water seepage of vertical feeding borehole for solid materials,we established the fluid-solid coupling dynamic model of groundwater flowing in rock mass adjacent to the vertical feeding borehole.Combining with the engineering geological conditions,we built a numeral model to study the influence rule of the aquifer hydraulic pressure and seepage location of feeding borehole on the amount of seepage with fnite element numerical method.The results show that the nonlinear relationship is presented among the amount of seepage,the seepage location and aquifer hydraulic pressure.The higher the aquifer hydraulic pressure is,the closer the distance between seepage location and aquifer is,and the faster the harmful levels of aquifer will grow.In practice,we calculated the allowable seepage of feeding borehole by the optimum moisture content and natural moisture content of backflling materials,and then determined the protection zone of feeding borehole,so the moisture content of backflling materials can be controlled within the scope of optimum moisture content.
基金the financial support from the Zhengzhou Collaborative Innovation Major Funding (18XTZX12010)National Key Research and Development Project (2016YFB0301101)Baosteel Metals Co.,Ltd.
文摘This paper comprehensively introduces a new magnesium production technology the compound-vertical-retort technology, involving in the related fundamental researches, core equipment development, working flow, and technical characteristics. Scale-up test and an annual1200-ton-magnesium demonstration-level test was conducted to confirm the rationality, reliability, and advancement of the equipment, system and process design. It is indicated that the new technology solved a series of problems of traditional silicothermic process including adhesion and glaze, short life of retort, low efficiency, high impurity of crystallized magnesium, large heat losses, and poor working environment,making a great technological breakthrough in this field. Representatively, the new well-designed ceramic-lined steel retort serves 2~3 times in life than the normal retorts. The magnesium yield per retort is improved 4~5 times, with purity of >99.8%. The energy consumption in reduction stage is reduced by more than 20%. The mechanical production is fully realized and operating environment is significantly improved.
文摘The finite element analysis was carried out for a composite vertical axis wind turbine with lift-drag combined starting structures to ensure the structure safety of a vertical axis wind turbine(VAWT).The static and modal analysis of rotor of a composite vertical axis wind turbine was conducted by using ANSYS software.The relevant contour sketch of stress and deformation was obtained.The analysis was made for static structural mechanics,modal analysis of rotor and the total deformation and vibration profile to evaluate the influence on the working capability of the rotor.The analysis results show that the various structure parameters lie in the safety range of structural mechanics in the relative standards.The analysis showing the design safe to operate the rotor of a vertical axis wind turbine.The methods used in this study can be used as a good reference for the structural mechanics′analysis of VAWTs.
基金Sponsored by the Science and Technology Projects of Heilongjiang Province (Grant No.GB07C20202 and LC06C16)
文摘In the paper the three-dimensional flow fields are numerically simulated in the vertical-shaft mechanical mix tank of a water treatment plant by means of FLUENT software based on the method of Computational Fluid Dynamics (CFD). The influences of design parameters on flow fields and the mixing effect are analyzed. Firstly,the prediction capability of the turbulence model adopted in simulations is evaluated. And then,the mesh independence is checked up. Finally,the flow fields in various dimensionless blade diameters and dimensionless shaft spans are numerically simulated respectively. The results have shown that the numerical simulation method based on CFD is a feasible assistance for the optimal designs of mixers. Moreover,the optimal design of the blade diameter should take into account both the flow field and the power consumption. The optimization of the shaft span is to achieve a relatively even distribution of the flow field without any rupture. With the consideration of an optimal design,the dimensionless blade diameter and dimensionless shaft span should be 0.45 and 0.57 respectively in the case.
基金supported by the National Natural Science Foundation of China(Grant No.51106034)the Central Universities Fundamental Research Foundation(Grant No.HEUCFR1104)the Marine Renewable Energy Special Foundation(Grant Nos.ZJME2010CY01 and ZJME2010GC01)
文摘The unsteady hydrodynamic characteristics of vertical axis tidal turbine are investigated by numerical simulation based on viscous CFD method. The starting mechanism of the turbine is revealed through analyzing the interaction of its motion and dynamics during starting process. The operating hydrodynamic characteristics of the turbine in wave-current condition are also explored by combining with the linear wave theory. According to possible magnification of the cyclic loads in the maximum power tracking control of vertical axis turbine, a novel torque control strategy is put forward, which can improve the structural characteristics significantly without effecting energy efficiency.
基金Project was supported by the National Natural Science Foundation of China(Grant No.51541112).
文摘A comprehensive protective structure with rigidity and flexibility was put forward and designed in view of the quality and safety problems for the double vertical explosive welding of large titanium/steel cladding plate.The movement speed and displacement of the protective structure was calculated by establishing its physics model.The dynamics and stabilization properties were analyzed,and the protective structure parameters were optimized and devised.The comprehensive protective structure,which is composed of rigidity unit and flexibility wall,can bear the impact of detonation wave and the high-speed movement of the cladding plate.There are no damage and deformation in the protective structure and the cladding plate.The protective structure can be used many times.The bonding rate of the Ti/steel plate obtained was nearly 100%,and there is no deformation,surface cracks,and big wave and micro-defects.Therefore,the protective problems of the double vertical explosive welding can be solved effectively by the protective structure.
基金Project(51274038)supported by the National Natural Science Foundation of China
文摘Copper cladding aluminum(CCA)rods with the section dimensions of12mm in diameter and2mm in sheath thickness were fabricated by vertical core-filling continuous casting(VCFC)technology.The kinds and morphology of interfacial intermetallic compounds(IMCs)were investigated by SEM,XRD and TEM.The results showed that the interfacial structure of Cu/Al was mainly composed of layeredγ1(Cu9Al4),cellularθ(CuAl2),andα(Al)+θ(CuAl2)phases.Moreover,residual acicularε2(Cu3Al2+x)phase was observed at the Cu/Al interface.By comparing the driving force of formation forε2(Cu3Al2+x)andγ1(Cu9Al4)phases,the conclusion was drawn that theε2(Cu3Al2+x)formed firstly at the Cu/Al interface.In addition,the interfacial formation mechanism of copper cladding aluminum composites was revealed completely.
基金the National Natural Science Foundation of China under contract No. 40576065.
文摘The horizontal and vertical distribution patterns of five planktonic copepods, Calanus sinicus, Acartia pacifica, Tortanus derjugini, Acartiella sinensis and Pseudodiaptomus poplesia, predominant in the Jiulong Estuary, were investigated from May 2003 to April 2004. The results showed that the distribution of these copepods was related to the tidal period but that each species had its own specific pattern. C. sinicus showed no tidal vertical migration behavior and was thought to be a non-resident species in this estuary. Among Acartia pacifica, T. derjugini,Acartiella sinensis, more individuals occurred in the surface than in the bottom waters during flood tide, and the pattern was reversed during ebb tide. The epibenthic copepod P. poplesia usually remained in the bottom waters in the upstream part of the estuary, but it displayed strong tidally-oriented vertical migration in the middle reaches of the estuary. Taking into account the hydrographic characteristics of the Jiulong Estuary, it was hypothesized that the planktonic copepods in this estuary had more or less adopted the mechanism of vertically migrating to the surface waters during flood tide in order to make use of the inflowing tide, and then sinking to the bottom during ebb tide to avoid being carried out of the estuary by net outflow.
文摘Micropiles are drilled and grouted piles having diameter between 100 to 250 mm. Due to its small diameter, it is suitable for low headroom and limited work area conditions. It can be installed without noise nuisance, without vibrations to surrounding soils and structures and without disruption to the production operations in industries which makes micropiles suitable for underpinning and seismic retrofitting of structures. It is necessary to therefore understand the behaviour of micropiles under different loading conditions. This work is on vertical and battered micropiles with different length/diameter ratio (L/D) subjected to vertical and lateral loading conditions. Batter angles had a significant influence on both the vertical and lateral load carrying capacity. The ultimate vertical load was found to increase upto a 30°batter. The ultimate lateral load was found to increase significantly with increasing L/D ratios upto an L/D ratio of 30 for vertical and 48 for battered piles, beyond which the increase was found to be not significant. In general, negative battered micropiles offered more lateral resistance than positive battered micropiles. The results of the study indicated that the ultimate load capacity and mode of failure of the micropiles are a function of the angle of batter, direction of batter and the L/D ratio for vertically and laterally loaded micropiles.
基金the National Natural Science Foundation of China(Grant Nos.U1706227 and 51979063)the Harbin Applied Technology Research and Development Project(Grant No.2015RQXXJ016)the Basic Research and Cutting-Edge Technology Projects of State Administration of Science(Grant No.JCKY2019604C003).
文摘A combined experimental and numerical investigation is carried out to study the performance of a vertical-axis eccentric-disc variable-pitch turbine(VEVT).A scheme of eccentric disc pitch control mechanism based on doubleblock mechanism is proposed.The eccentric control mechanism and the deflection angle control mechanism in the pitch control structure are designed and optimized according to the functional requirements of the turbine,and the three-dimensional model of the turbine is established.Kinematics analysis of the eccentric disc pitch control mechanism is carried out.Kinematics parameters and kinematics equations which can characterize its motion characteristics are derived.Kinematics analysis and simulation are carried out,and the motion law of the corresponding mechanical system is obtained.By analyzing the force and motion of blade of VEVT,the expressions of the important parameters such as deflection angle,attack angle and energy utilization coefficient are obtained.The lateral induced velocity coefficient is acquired by momentum theorem,the hydrodynamic parameters such as energy utilization coefficient are derived,and the hydrodynamic characteristics of VEVT are also obtained.The experimental results show that the turbine has good energy capture capability at different inflow velocities of different sizes and directions,which verifies that VEVT has good self-startup performance and high energy capture efficiency.
文摘It is illustrated that there exists an inflection circle on the linkage rigid body by the principle of relative motion. Confirmed methods of the inflection circle, curvature radius and curvature center of the point track on the linkage rigid body are given in the case of the different contact type of move instantaneous center line and static instantaneous center line. The regularity of distribution of curvature radius and curvature center of the point track is researched. The identification methods called determination parameters and auxiliary vertical line of the diameter and direction of the inflection circle in the four bar mechanism are pointed out. A design method of the crane hoisting mechanism is discussed in the end of this paper.
基金supported by the National Natural Science Foundation of China under Grant Nos.40175018 and 40275026.
文摘A linear diagnostic equation for the nonhydrostatic vertical motion W in severe storms is derived in the Cartesian-earth-spherical coordinates. This W diagnostic equation reveals explicitly how forcing factors work together to exert influence on the nonhydrostatic vertical motion in severe storms. If high-resolution global data are available in Cartesian coordinates with guaranteed quality, the Lax-Crank-Nicolson scheme and the Thomas algorithm might provide a promising numerical solution of this diagnostic equation. As a result, quantitative analyses are expected for the evolution mechanisms of severe storms.
基金Key Program of the National Natural Science Foundation of China(No.2019YFE0190500)Fundamental Research Funds for the Central Universities of Ministry of Education of China(No.2232021D-22)。
文摘The introduction of blockchain to federated learning(FL)is a promising solution to enable anonymous clients to collaboratively learn a shared prediction model using local data while avoiding the risk caused by the central server.However,the current researches only apply a shallow convergence between the two technologies.The aroused problems,such as the unsuitable consensus,the lack of incentive mechanism,and the incompetence of handling vertically partitioned data,make the blockchain-based FL exist in name only.This paper puts forward a novel blockchain-based framework for vertical FL with a specified consensus and incentive.Moreover,a real-world example is demonstrated to prove the practicability of our work.
基金Project supported by the National Natural Science Foundation of China(Grant No.51979125)supported by the Jiangsu Provincial Science Fund for Distinguished Young Scholars(Grant No.BK20211547)+2 种基金the Technological Innovation Team Project in Colleges and Universities of Jiangsu Province(Grant No.SKJ(2021)-1)the Open Research Subject of Key Laboratory of Fluid Machinery and Engineering(Xihua University)of Sichuan Province(Grant No.LTDL-2022007)the Graduate Research and Innovation Projects of Jiangsu Province(Grant No.KYCX23_3701).
文摘The purpose of this paper is to investigate the performance improvement mechanism of a high power vertical centrifugal pump by using numerical calculations.Therefore,a comparative study of energy losses and internal flow characteristics in the original and optimized models was carried out with special attention to the hydraulic component matching.The optimized model(model B)was obtained by optimizing the vaned diffuser and volute based on the original model(model A),mainly the diffuser inlet diameter,diffuser inlet vane angle,volute channel inlet width and volute throat area were changed.Firstly,the comparative results on performance and energy losses of two models showed that the efficiency and head of model B was significantly increased under design and part-load conditions.It is mainly due to the dramatic reduction of energy loss PL in the diffuser and volute.Then,the comparisons of PL and flow patterns in the vaned diffuser showed that the matching optimization between the model B impeller outlet flow angle and diffuser inlet vane angle resulted in a better flow pattern in both the circumferential and axial directions of the diffuser,which leads to the PL3 reduction.The meridian velocity Vm of model B was significantly increased at diffuser inlet regions and resulted in improvements of flow patterns at diffuser middle and outlet regions as well as pressure expansion capacity.Finally,the comparisons of PL and flow characteristics in the volute showed that the turbulence loss reduction in the model B volute was due to the flow pattern improvement at diffuser outlet regions which provided better flow conditions at volute inlet regions.The matching optimization between the diffuser and volute significantly reduced the turbulence loss in volute sections 1–4 and enhanced the pressure expansion capacity in sections 8–10.