Due to the importance and advantages of Vertical-axis wind turbines (VAWTs) over traditional horizontal-axis wind turbines (HAWTs), this paper is implemented. Savonius turbines with drag-based rotors are adopted from ...Due to the importance and advantages of Vertical-axis wind turbines (VAWTs) over traditional horizontal-axis wind turbines (HAWTs), this paper is implemented. Savonius turbines with drag-based rotors are adopted from the two more extensive arrangements of vertical wind turbines because of their advantages. In this paper, six diverse rotor plans with measure up to cleared regions are analyzed with exploratory wind burrow testing and numerical reenactments. These proposed models incorporate a conventional Savonius with two different edges criteria and 90 degree helical bend models with two, three and four sharp edges. The models were designed using SolidWorks software then the physical models were 3D printed for testing. A subsonic open-sort wind burrow was utilized for Revolution per Minute (RPM) and torque estimation over a scope of wind speeds. ANSYS Fluent reenactments were utilized for dissecting streamlined execution by using moving reference outline and sliding lattice display methods. A 3-dimensional and transient strategy was utilized for precisely tackling torque and power coefficients. The five new rotor geometries have important advantages such as making a focal point of weight advance from the hub of revolution and causing more noteworthy torque on the turbine shaft contrasted with the customary Savonius turbine. Our new models with the names of CC model and QM model display cross-areas lessen the aggregate scope of negative torque on the edges by 20 degrees, contrasted with the customary Savonius demonstrate. Helical plans are better spread the connected torque over a total transformation resulting in positive torque over every single operational point. Moreover, helical models with 2 and 3 cutting edges have the best self-starting ability in low wind speeds. Helical VAWT with 3 edges starts revolution of 35 RPM at only 1.4 m/s wind speed under no generator stacking. The most noteworthy power coefficient is accomplished, both tentatively and numerically, by the helical VAWT with 2 sharp edges.展开更多
To reduce the vibration and aerodynamic noise of wind turbines,a new design is proposed relying on a blade with a bifurcated apex or tip.The performances of this wind turbine wheel are tested at the entrance of a DC(d...To reduce the vibration and aerodynamic noise of wind turbines,a new design is proposed relying on a blade with a bifurcated apex or tip.The performances of this wind turbine wheel are tested at the entrance of a DC(direct-action)wind tunnel for different blade tip angles and varying centrifugal force and aerodynamic loads.The test results indicate that the bifurcated apex can reduce the vibration acceleration amplitude and the vibration fre-quency of the wind wheel.At the same time,the bifurcated apex can lower the maximum sound pressure level corresponding to the rotating fundamental frequency of the wind wheel.According to all thesefindings,the tip angle of the bifurcated apex is the main factor enhancing the effect of the modification.展开更多
The wheel-rail force measurement is of great importance to the condition monitoring and safety evaluation of railway vehicles. In this paper, an improved indirect method for wheel-rail force measurement is proposed to...The wheel-rail force measurement is of great importance to the condition monitoring and safety evaluation of railway vehicles. In this paper, an improved indirect method for wheel-rail force measurement is proposed to evaluate the running safety of railway vehicles. In this method, the equilibrium equations of a suspended wheelset are derived and the wheel-rail forces are then be obtained from measured suspension and inertia forces. This indirect method avoids structural modifications to the wheelset and is applicable to the long-term operation of railway vehicles. As the wheel-rail lateral forces at two sides of the wheelset are difficult to separate, a new derailment criterion by combined use of wheelset derailment coefficient and wheel unloading ratio is proposed. To illustrate its effectiveness, the indirect method is applied to safety evaluation of rail- way vehicles in different scenarios, such as the cross wind safety of a high-speed train and the safety of a metro vehicle with hunting motions. Then, the feasibility of using this method to identify wheel-rail forces for low-floor light rail vehicles with resilient wheels is discussed. The values identified by this method is compared with that by Simpack simulation for the same low-floor vehicle, which shows a good coincidence between them in the time domain of the wheelset lateral force and the wheel-rail vertical force. In addition, use of the method to determine the high-frequency wheel-rail interaction forces reveals that it is possible to identify the high-frequency wheel-rail forces through the accelerations on the axle box.展开更多
This paper posits that a low-speed wind turbine design is suitable for harnessing wind energy in Africa.Conventional wind turbines consisting of propeller designs are commonly used across the world.A major hurdle to u...This paper posits that a low-speed wind turbine design is suitable for harnessing wind energy in Africa.Conventional wind turbines consisting of propeller designs are commonly used across the world.A major hurdle to utilizing wind energy in Africa is that conventional commercial wind turbines are designed to operate at wind speeds greater than those prevalent in most of the continent,especially in sub-Sahara Africa(SSA).They are heavy and expensive to purchase,install,and maintain.As a result,only a few countries in Africa have been able to include wind energy in their energy mix.In this paper,the feasibility of a novel low-speed wind turbine based on a Ferris wheel is demonstrated for low wind speed applications in Africa.The performance of Ferris wheel wind turbines(FWT)with 61m(200 ft),73m(240 ft)and 104m(341 ft)diameter rims and an 800kW generator are evaluated for selected African cities.The research also compares the Weibull wind distribution of the African cities of interest.A comparison between the FWT and the conventional commercial wind turbines in terms of efficiency,rated wind speed,cost,performance,and power to weight is included.Results show that the FWT has the potential for economic power generation at rated wind speeds of 6.74m/s,which are lower than the average of 12 m/s for conventional wind turbines and have lower power to weight ratios of 5.2 kW/tonne as compared to 6.0-9.2 kW/tonne for conventional wind turbines.展开更多
Recently, there is a growing interest in seismic qualification of ridges, buildings and mechanical equipment worldwide due to increase of accidents caused by earthquake. Severe earthquake can bring serious problems in...Recently, there is a growing interest in seismic qualification of ridges, buildings and mechanical equipment worldwide due to increase of accidents caused by earthquake. Severe earthquake can bring serious problems in the wind turbines and eventually lead to an interruption to their electric power supply. To overcome and prevent these undesirable problems, structural design optimization of a small vertical axis wind turbine has performed, in this study, for seismic qualification and lightweight by using a Genetic Algorithm (GA) subject to some design constraints such as the maximum stress limit, maximum deformation limit, and seismic acceleration gain limit. Also, the structural design optimizations were conducted for the four different initial design variable sets to confirm robustness of the optimization algorithm used. As a result, all the optimization results for the 4 different initial designs showed good agreement with each other properly. Thus the structural design optimization of a small vertical-axis wind turbine could be successfully accomplished.展开更多
To improve the power-extraction performance of the Savonius vertical-axis wind turbine(S-VAWT),additional cylinders,which are used to control the fluid flow around the wind turbine blade,were introduced into the blade...To improve the power-extraction performance of the Savonius vertical-axis wind turbine(S-VAWT),additional cylinders,which are used to control the fluid flow around the wind turbine blade,were introduced into the blade design.In contrast to the traditional numerical method,a mathematical model in the form of a dynamical system was used in this study.A numerical calculation program that could effectively solve the equations of wind-induced rotation of S-VAWT was developed,and combined with the Taguchi experimental method to investigate the influence of additional cylinders on the power-extraction characteristics of the S-VAWT.The results showed that the additional cylinders have a significant impact on the power-extraction performance of the S-VAWT.At 4-m/s wind speed,the average power coefficient of the S-VAWT with additional cylinders is 15%higher than that of the conventional S-VAWT.After construction of the wind turbine prototype and power-extraction tests,the results showed that compared with a conventional S-VAWT,the output power was 29%higher for the S-VAWT with additional cylinders under the same particular conditions.展开更多
文摘Due to the importance and advantages of Vertical-axis wind turbines (VAWTs) over traditional horizontal-axis wind turbines (HAWTs), this paper is implemented. Savonius turbines with drag-based rotors are adopted from the two more extensive arrangements of vertical wind turbines because of their advantages. In this paper, six diverse rotor plans with measure up to cleared regions are analyzed with exploratory wind burrow testing and numerical reenactments. These proposed models incorporate a conventional Savonius with two different edges criteria and 90 degree helical bend models with two, three and four sharp edges. The models were designed using SolidWorks software then the physical models were 3D printed for testing. A subsonic open-sort wind burrow was utilized for Revolution per Minute (RPM) and torque estimation over a scope of wind speeds. ANSYS Fluent reenactments were utilized for dissecting streamlined execution by using moving reference outline and sliding lattice display methods. A 3-dimensional and transient strategy was utilized for precisely tackling torque and power coefficients. The five new rotor geometries have important advantages such as making a focal point of weight advance from the hub of revolution and causing more noteworthy torque on the turbine shaft contrasted with the customary Savonius turbine. Our new models with the names of CC model and QM model display cross-areas lessen the aggregate scope of negative torque on the edges by 20 degrees, contrasted with the customary Savonius demonstrate. Helical plans are better spread the connected torque over a total transformation resulting in positive torque over every single operational point. Moreover, helical models with 2 and 3 cutting edges have the best self-starting ability in low wind speeds. Helical VAWT with 3 edges starts revolution of 35 RPM at only 1.4 m/s wind speed under no generator stacking. The most noteworthy power coefficient is accomplished, both tentatively and numerically, by the helical VAWT with 2 sharp edges.
基金supported by the National Natural Science Foundation Project under Grant Numbers[51966018,51466015].
文摘To reduce the vibration and aerodynamic noise of wind turbines,a new design is proposed relying on a blade with a bifurcated apex or tip.The performances of this wind turbine wheel are tested at the entrance of a DC(direct-action)wind tunnel for different blade tip angles and varying centrifugal force and aerodynamic loads.The test results indicate that the bifurcated apex can reduce the vibration acceleration amplitude and the vibration fre-quency of the wind wheel.At the same time,the bifurcated apex can lower the maximum sound pressure level corresponding to the rotating fundamental frequency of the wind wheel.According to all thesefindings,the tip angle of the bifurcated apex is the main factor enhancing the effect of the modification.
基金supported by the National Natural Science Foundation of China (Grant No. U1334206 and No. 51475388)Science & Technology Development Project of China Railway Corporation (Grant No. J012-C)
文摘The wheel-rail force measurement is of great importance to the condition monitoring and safety evaluation of railway vehicles. In this paper, an improved indirect method for wheel-rail force measurement is proposed to evaluate the running safety of railway vehicles. In this method, the equilibrium equations of a suspended wheelset are derived and the wheel-rail forces are then be obtained from measured suspension and inertia forces. This indirect method avoids structural modifications to the wheelset and is applicable to the long-term operation of railway vehicles. As the wheel-rail lateral forces at two sides of the wheelset are difficult to separate, a new derailment criterion by combined use of wheelset derailment coefficient and wheel unloading ratio is proposed. To illustrate its effectiveness, the indirect method is applied to safety evaluation of rail- way vehicles in different scenarios, such as the cross wind safety of a high-speed train and the safety of a metro vehicle with hunting motions. Then, the feasibility of using this method to identify wheel-rail forces for low-floor light rail vehicles with resilient wheels is discussed. The values identified by this method is compared with that by Simpack simulation for the same low-floor vehicle, which shows a good coincidence between them in the time domain of the wheelset lateral force and the wheel-rail vertical force. In addition, use of the method to determine the high-frequency wheel-rail interaction forces reveals that it is possible to identify the high-frequency wheel-rail forces through the accelerations on the axle box.
基金This research is funded by the African Centre of Excellence,Energy for Sustainable Development,University of Rwanda,through the World Bank ACE II Program.
文摘This paper posits that a low-speed wind turbine design is suitable for harnessing wind energy in Africa.Conventional wind turbines consisting of propeller designs are commonly used across the world.A major hurdle to utilizing wind energy in Africa is that conventional commercial wind turbines are designed to operate at wind speeds greater than those prevalent in most of the continent,especially in sub-Sahara Africa(SSA).They are heavy and expensive to purchase,install,and maintain.As a result,only a few countries in Africa have been able to include wind energy in their energy mix.In this paper,the feasibility of a novel low-speed wind turbine based on a Ferris wheel is demonstrated for low wind speed applications in Africa.The performance of Ferris wheel wind turbines(FWT)with 61m(200 ft),73m(240 ft)and 104m(341 ft)diameter rims and an 800kW generator are evaluated for selected African cities.The research also compares the Weibull wind distribution of the African cities of interest.A comparison between the FWT and the conventional commercial wind turbines in terms of efficiency,rated wind speed,cost,performance,and power to weight is included.Results show that the FWT has the potential for economic power generation at rated wind speeds of 6.74m/s,which are lower than the average of 12 m/s for conventional wind turbines and have lower power to weight ratios of 5.2 kW/tonne as compared to 6.0-9.2 kW/tonne for conventional wind turbines.
文摘Recently, there is a growing interest in seismic qualification of ridges, buildings and mechanical equipment worldwide due to increase of accidents caused by earthquake. Severe earthquake can bring serious problems in the wind turbines and eventually lead to an interruption to their electric power supply. To overcome and prevent these undesirable problems, structural design optimization of a small vertical axis wind turbine has performed, in this study, for seismic qualification and lightweight by using a Genetic Algorithm (GA) subject to some design constraints such as the maximum stress limit, maximum deformation limit, and seismic acceleration gain limit. Also, the structural design optimizations were conducted for the four different initial design variable sets to confirm robustness of the optimization algorithm used. As a result, all the optimization results for the 4 different initial designs showed good agreement with each other properly. Thus the structural design optimization of a small vertical-axis wind turbine could be successfully accomplished.
基金This work is supported by the National Natural Science Foundation of China(No.51975429).
文摘To improve the power-extraction performance of the Savonius vertical-axis wind turbine(S-VAWT),additional cylinders,which are used to control the fluid flow around the wind turbine blade,were introduced into the blade design.In contrast to the traditional numerical method,a mathematical model in the form of a dynamical system was used in this study.A numerical calculation program that could effectively solve the equations of wind-induced rotation of S-VAWT was developed,and combined with the Taguchi experimental method to investigate the influence of additional cylinders on the power-extraction characteristics of the S-VAWT.The results showed that the additional cylinders have a significant impact on the power-extraction performance of the S-VAWT.At 4-m/s wind speed,the average power coefficient of the S-VAWT with additional cylinders is 15%higher than that of the conventional S-VAWT.After construction of the wind turbine prototype and power-extraction tests,the results showed that compared with a conventional S-VAWT,the output power was 29%higher for the S-VAWT with additional cylinders under the same particular conditions.