Medical imaging plays a key role within modern hospital management systems for diagnostic purposes.Compression methodologies are extensively employed to mitigate storage demands and enhance transmission speed,all whil...Medical imaging plays a key role within modern hospital management systems for diagnostic purposes.Compression methodologies are extensively employed to mitigate storage demands and enhance transmission speed,all while upholding image quality.Moreover,an increasing number of hospitals are embracing cloud computing for patient data storage,necessitating meticulous scrutiny of server security and privacy protocols.Nevertheless,considering the widespread availability of multimedia tools,the preservation of digital data integrity surpasses the significance of compression alone.In response to this concern,we propose a secure storage and transmission solution for compressed medical image sequences,such as ultrasound images,utilizing a motion vector watermarking scheme.The watermark is generated employing an error-correcting code known as Bose-Chaudhuri-Hocquenghem(BCH)and is subsequently embedded into the compressed sequence via block-based motion vectors.In the process of watermark embedding,motion vectors are selected based on their magnitude and phase angle.When embedding watermarks,no specific spatial area,such as a region of interest(ROI),is used in the images.The embedding of watermark bits is dependent on motion vectors.Although reversible watermarking allows the restoration of the original image sequences,we use the irreversible watermarking method.The reason for this is that the use of reversible watermarks may impede the claims of ownership and legal rights.The restoration of original data or images may call into question ownership or other legal claims.The peak signal-to-noise ratio(PSNR)and structural similarity index(SSIM)serve as metrics for evaluating the watermarked image quality.Across all images,the PSNR value exceeds 46 dB,and the SSIM value exceeds 0.92.Experimental results substantiate the efficacy of the proposed technique in preserving data integrity.展开更多
Since real world communication channels are not error free, the coded data transmitted on them may be corrupted, and block based image coding systems are vulnerable to transmission impairment. So the best neighborh...Since real world communication channels are not error free, the coded data transmitted on them may be corrupted, and block based image coding systems are vulnerable to transmission impairment. So the best neighborhood match method using genetic algorithm is used to conceal the error blocks. Experimental results show that the searching space can be greatly reduced by using genetic algorithm compared with exhaustive searching method, and good image quality is achieved. The peak signal noise ratios(PSNRs) of the restored images are increased greatly.展开更多
Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to ...Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to the degradation of image.This paper presents a fusion framework based on block-matching and 3D(BM3D) multi-scale transform. The algorithm first divides the image into different blocks and groups these 2D image blocks into 3D arrays by their similarity. Then it uses a 3D transform which consists of a 2D multi-scale and a 1D transform to transfer the arrays into transform coefficients, and then the obtained low-and high-coefficients are fused by different fusion rules. The final fused image is obtained from a series of fused 3D image block groups after the inverse transform by using an aggregation process. In the experimental part, we comparatively analyze some existing algorithms and the using of different transforms, e.g. non-subsampled Contourlet transform(NSCT), non-subsampled Shearlet transform(NSST), in the 3D transform step. Experimental results show that the proposed fusion framework can not only improve subjective visual effect, but also obtain better objective evaluation criteria than state-of-the-art methods.展开更多
In this paper, a fast image encryption algorithm is proposed, in which the shuffling and diffusion is performed simul- taneously. The cipher-text image is divided into blocks and each block has k x k pixels, while the...In this paper, a fast image encryption algorithm is proposed, in which the shuffling and diffusion is performed simul- taneously. The cipher-text image is divided into blocks and each block has k x k pixels, while the pixels of the plain-text are scanned one by one. Four logistic maps are used to generate the encryption key stream and the new place in the cipher image of plain image pixels, including the row and column of the block which the pixel belongs to and the place where the pixel would be placed in the block. After encrypting each pixel, the initial conditions of logistic maps would be changed ac- cording to the encrypted pixel's value; after encrypting each row of plain image, the initial condition would also be changed by the skew tent map. At last, it is illustrated that this algorithm has a faster speed, big key space, and better properties in withstanding differential attacks, statistical analysis, known plaintext, and chosen plaintext attacks.展开更多
Medical image super-resolution is a fundamental challenge due to absorption and scattering in tissues.These challenges are increasing the interest in the quality of medical images.Recent research has proven that the r...Medical image super-resolution is a fundamental challenge due to absorption and scattering in tissues.These challenges are increasing the interest in the quality of medical images.Recent research has proven that the rapid progress in convolutional neural networks(CNNs)has achieved superior performance in the area of medical image super-resolution.However,the traditional CNN approaches use interpolation techniques as a preprocessing stage to enlarge low-resolution magnetic resonance(MR)images,adding extra noise in the models and more memory consumption.Furthermore,conventional deep CNN approaches used layers in series-wise connection to create the deeper mode,because this later end layer cannot receive complete information and work as a dead layer.In this paper,we propose Inception-ResNet-based Network for MRI Image Super-Resolution known as IRMRIS.In our proposed approach,a bicubic interpolation is replaced with a deconvolution layer to learn the upsampling filters.Furthermore,a residual skip connection with the Inception block is used to reconstruct a high-resolution output image from a low-quality input image.Quantitative and qualitative evaluations of the proposed method are supported through extensive experiments in reconstructing sharper and clean texture details as compared to the state-of-the-art methods.展开更多
In this paper, we propose a novel block cryptographic scheme based on a spatiotemporal chaotic system and a chaotic neural network (CNN). The employed CNN comprises a 4-neuron layer called a chaotic neuron layer (...In this paper, we propose a novel block cryptographic scheme based on a spatiotemporal chaotic system and a chaotic neural network (CNN). The employed CNN comprises a 4-neuron layer called a chaotic neuron layer (CNL), where the spatiotemporal chaotic system participates in generating its weight matrix and other parameters. The spatiotemporal chaotic system used in our scheme is the typical coupled map lattice (CML), which can be easily implemented in parallel by hard- ware. A 160-bit-long binary sequence is used to generate the initial conditions of the CML. The decryption process is symmetric relative to the encryption process. Theoretical analysis and experimental results prove that the block cryptosys- tem is secure and practical, and suitable for image encryption.展开更多
At present,underwater terrain images are all strip-shaped small fragment images preprocessed by the side-scan sonar imaging system.However,the processed underwater terrain images have inconspicuous and few feature poi...At present,underwater terrain images are all strip-shaped small fragment images preprocessed by the side-scan sonar imaging system.However,the processed underwater terrain images have inconspicuous and few feature points.In order to better realize the stitching of underwater terrain images and solve the problems of slow traditional image stitching speed,we proposed an improved algorithm for underwater terrain image stitching based on spatial gradient feature block.First,the spatial gradient fuzzy C-Means algorithm is used to divide the underwater terrain image into feature blocks with the fusion of spatial gradient information.The accelerated-KAZE(AKAZE)algorithm is used to combine the feature block information to match the reference image and the target image.Then,the random sample consensus(RANSAC)is applied to optimize the matching results.Finally,image fusion is performed with the global homography and the optimal seam-line method to improve the accuracy of image overlay fusion.The experimental results show that the proposed method in this paper effectively divides images into feature blocks by combining spatial information and gradient information,which not only solves the problem of stitching failure of underwater terrain images due to unobvious features,and further reduces the sensitivity to noise,but also effectively reduces the iterative calculation in the feature point matching process of the traditional method,and improves the stitching speed.Ghosting and shape warping are significantly eliminated by re-optimizing the overlap of the image.展开更多
The purpose of this paper is to show the preconditioned BMinPert algorithm and analyse the practical implementation. Then a posteriori backward error for BGMRES is given. Furthermore, we discuss their applications in ...The purpose of this paper is to show the preconditioned BMinPert algorithm and analyse the practical implementation. Then a posteriori backward error for BGMRES is given. Furthermore, we discuss their applications in color image restoration. The key differences between BMinPert and other methods such as BFGMRES-S(m, p<sub>f</sub>), GsGMRES and BGMRES are illustrated with numerical experiments which expound the advantages of BMinPert in the presence of sensitive data with ill-condition problems.展开更多
The substitution box(S-box)is a fundamentally important component of symmetric key cryptosystem.An S-box is a primary source of non-linearity in modern block ciphers,and it resists the linear attack.Various approaches...The substitution box(S-box)is a fundamentally important component of symmetric key cryptosystem.An S-box is a primary source of non-linearity in modern block ciphers,and it resists the linear attack.Various approaches have been adopted to construct S-boxes.S-boxes are commonly constructed over commutative and associative algebraic structures including Galois fields,unitary commutative rings and cyclic and non-cyclic finite groups.In this paper,first a non-associative ring of order 512 is obtained by using computational techniques,and then by this ring a triplet of 8×8 S-boxes is designed.The motivation behind the designing of these S-boxes is to upsurge the robustness and broaden the key space due to non-associative and noncommutative behavior of the algebraic structure under consideration.A novel color image encryption application is anticipated in which initially these 3 S-boxes are being used to produce confusion in three layers of a standard RGB image.However,for the sake of diffusion 3D Arnold chaotic map is used in the proposed encryption scheme.A comparison with some of existing chaos and S-box dependent color image encryption schemes specs the performance results of the anticipated RGB image encryption and observed as approaching the standard prime level.展开更多
A block difference compression algorithm based on block PSNR, Which is one of the parameters of image quality is presented for image sequence processing. This algorithm adopts classical JPEG method in intra-frame codi...A block difference compression algorithm based on block PSNR, Which is one of the parameters of image quality is presented for image sequence processing. This algorithm adopts classical JPEG method in intra-frame coding, and processes 8×8 blocks of inter-frame with different methods depending on the results from the current PSNR compared with a threshold. The calculation of threshold and the situation of error accumulation based on different thresholds as well as the structure of code stream are also presented. The advantage of this algorithm is the reduction of the large operation volume during inter-frame processing.展开更多
Block adjustment for satellite images cannot be solved with weak convergence geometric conditions,therefore a plane block adjustment method to improve the targeting precision of images is proposed utilizing DEM as hei...Block adjustment for satellite images cannot be solved with weak convergence geometric conditions,therefore a plane block adjustment method to improve the targeting precision of images is proposed utilizing DEM as height constraint plane block adjustment method.First,a rational function model with affine transformation is selected as the mathematical model of the satellite image plane block adjustment.Second,to update the ground coordinates of tie points(TPs),the plane coordinates of TPs are only solved in the adjustment process.Elevation values are obtained by using DEM interpolation.Finally,the plane coordinates of all TPs and orientation parameters of all satellite images are solved through plane block adjustment with a few ground control points ZY-3 nadir images for two regions are tested for plane block adjustment while ZY-3 forward-nadir-back images of the same two regions are tested for stereo block adjustment.A comparison indicates that almost the same accuracy can be obtained with plane block adjustment support using a 1∶50 000 DEM and stereo block adjustment for ZY-3 images.For ZY-3 nadir images,almost no loss of plane block adjustment accuracy occurred when global DEM with 1 km grid and SRTM with 90 m grid replaced the 1∶50 000 DEM as elevation control,.Test results demonstrate the effectiveness and feasibility of the plane block adjustment method.展开更多
To compress screen image sequence in real-time remote and interactive applications,a novel compression method is proposed.The proposed method is named as CABHG.CABHG employs hybrid coding schemes that consist of intra...To compress screen image sequence in real-time remote and interactive applications,a novel compression method is proposed.The proposed method is named as CABHG.CABHG employs hybrid coding schemes that consist of intra-frame and inter-frame coding modes.The intra-frame coding is a rate-distortion optimized adaptive block size that can be also used for the compression of a single screen image.The inter-frame coding utilizes hierarchical group of pictures(GOP) structure to improve system performance during random accesses and fast-backward scans.Experimental results demonstrate that the proposed CABHG method has approximately 47%-48% higher compression ratio and 46%-53% lower CPU utilization than professional screen image sequence codecs such as TechSmith Ensharpen codec and Sorenson 3 codec.Compared with general video codecs such as H.264 codec,XviD MPEG-4 codec and Apple's Animation codec,CABHG also shows 87%-88% higher compression ratio and 64%-81% lower CPU utilization than these general video codecs.展开更多
Copy-move forgery is the most common type of digital image manipulation,in which the content from the same image is used to forge it.Such manipulations are performed to hide the desired information.Therefore,forgery d...Copy-move forgery is the most common type of digital image manipulation,in which the content from the same image is used to forge it.Such manipulations are performed to hide the desired information.Therefore,forgery detection methods are required to identify forged areas.We have introduced a novel method for features computation by employing a circular block-based method through local tetra pattern(LTrP)features to detect the single and multiple copy-move attacks from the images.The proposed method is applied over the circular blocks to efficiently and effectively deal with the post-processing operations.It also uses discrete wavelet transform(DWT)for dimension reduction.The obtained approximate image is distributed into circular blocks on which the LTrP algorithm is employed to calculate the feature vector as the LTrP provides detailed information about the image content by utilizing the direction-based relation of central pixel to its neighborhoods.Finally,Jeffreys and Matusita distance is used for similarity measurement.For the evaluation of the results,three datasets are used,namely MICC-F220,MICC-F2000,and CoMoFoD.Both the qualitative and quantitative analysis shows that the proposed method exhibits state-of-the-art performance under the presence of post-processing operations and can accurately locate single and multiple copy-move forgery attacks on the images.展开更多
This paper proposes an electronic image stabilization algorithm based on efficient block matching on the plane. This algorithm uses a hexagonal search algorithm, and uses the bit-planes to estimate and compensate for ...This paper proposes an electronic image stabilization algorithm based on efficient block matching on the plane. This algorithm uses a hexagonal search algorithm, and uses the bit-planes to estimate and compensate for the translational motion between video sequences at the same time;As for the rotary motion vector generated in the video sequences, in order to highlight the intensity change of the image sequence, the algorithm firstly conducts Laplace transform for the reference frame, then select a number of characteristics at the image edge to make block matching with the current frame, calculate and compensate for the rotational movement that may exist finally. Through theoretical analysis and simula-tion, we prove that, as for a mixed translational and rotational motion video sequences, the proposed algorithm can reduce required time for block matching computation ,while improving the accuracy of the electronic image stabilization.展开更多
Due to coarse quantization, block-based discrete cosine transform(BDCT) compression methods usually suffer from visible blocking artifacts at the block boundaries. A novel efficient de-blocking method in DCT domain is...Due to coarse quantization, block-based discrete cosine transform(BDCT) compression methods usually suffer from visible blocking artifacts at the block boundaries. A novel efficient de-blocking method in DCT domain is proposed. A specific criterion for edge detection is given, one-dimensional DCT is applied on each row of the adjacent blocks and the shifted block in smooth region, and the transform coefficients of the shifted block are modified by weighting the average of three coefficients of the block. Mean square difference of slope criterion is used to judge the efficiency of the proposed algorithm. Simulation results show that the new method not only obtains satisfactory image quality, but also maintains high frequency information.展开更多
The identification of objects in binary images is a fundamental task in image analysis and pattern recognition tasks. The Euler number of a binary image is an important topological measure which is used as a feature i...The identification of objects in binary images is a fundamental task in image analysis and pattern recognition tasks. The Euler number of a binary image is an important topological measure which is used as a feature in image analysis. In this paper, a very fast algorithm for the detection and localization of the objects and the computation of the Euler number of a binary image is proposed. The proposed algorithm operates in one scan of the image and is based on the Image Block Representation (IBR) scheme. The proposed algorithm is more efficient than conventional pixel based algorithms in terms of execution speed and representation of the extracted information.展开更多
Image denoising has become one of the major forms of image enhancement methods that form the basis of image processing. Due to the inconsistencies in the machinery producing these signals, medical images tend to requi...Image denoising has become one of the major forms of image enhancement methods that form the basis of image processing. Due to the inconsistencies in the machinery producing these signals, medical images tend to require these techniques. In real time, images do not contain a single noise, and instead they contain multiple types of noise distributions in several indistinct regions. This paper presents an image denoising method that uses Metaheuristics to perform noise identification. Adaptive block selection is used to identify and correct the noise contained in these blocks. Though the system uses a block selection scheme, modifications are performed on pixel- to-pixel basis and not on the entire blocks;hence the image accuracy is preserved. PSO is used to identify the noise distribution, and appropriate noise correction techniques are applied to denoise the images. Experiments were conducted using salt and pepper noise, Gaussian noise and a combination of both the noise in the same image. It was observed that the proposed method performed effectively on noise levels up-to 0.5 and was able to produce results with PSNR values ranging from 20 to 30 in most of the cases. Excellent reduction rates were observed on salt and pepper noise and moderate reduction rates were observed on Gaussian noise. Experimental results show that our proposed system has a wide range of applicability in any domain specific image denoising scenario, such as medical imaging, mammogram etc.展开更多
Dealing with issues such as too simple image features and word noise inference in product image sentence anmotation, a product image sentence annotation model focusing on image feature learning and key words summariza...Dealing with issues such as too simple image features and word noise inference in product image sentence anmotation, a product image sentence annotation model focusing on image feature learning and key words summarization is described. Three kernel descriptors such as gradient, shape, and color are extracted, respectively. Feature late-fusion is executed in turn by the multiple kernel learning model to obtain more discriminant image features. Absolute rank and relative rank of the tag-rank model are used to boost the key words' weights. A new word integration algorithm named word sequence blocks building (WSBB) is designed to create N-gram word sequences. Sentences are generated according to the N-gram word sequences and predefined templates. Experimental results show that both the BLEU-1 scores and BLEU-2 scores of the sentences are superior to those of the state-of-art baselines.展开更多
Blind forensics of JPEG image tampering as a kind of digital image blind forensics technology is gradually becoming a new research hotspot in the field of image security. Firstly, the main achievements of domestic and...Blind forensics of JPEG image tampering as a kind of digital image blind forensics technology is gradually becoming a new research hotspot in the field of image security. Firstly, the main achievements of domestic and foreign scholars in the blind forensic technology of JPEG image tampering were briefly described. Then, according to the different methods of tampering and detection, the current detection was divided into two types: double JPEG compression detection and block effect inconsistency detection. This paper summarized the existing methods of JPEG image blind forensics detection, and analyzed the two methods. Finally, the existing problems and future research trends were analyzed and prospected to provide further theoretical support for the research of JPEG image blind forensics technology.展开更多
This paper gives a new algorithm to enlarge images based on local matching. Its main advantage is capable of preserving the edge of the enlarged image and improving both the subjective effect and the objective effect.
基金supported by the Yayasan Universiti Teknologi PETRONAS Grants,YUTP-PRG(015PBC-027)YUTP-FRG(015LC0-311),Hilmi Hasan,www.utp.edu.my.
文摘Medical imaging plays a key role within modern hospital management systems for diagnostic purposes.Compression methodologies are extensively employed to mitigate storage demands and enhance transmission speed,all while upholding image quality.Moreover,an increasing number of hospitals are embracing cloud computing for patient data storage,necessitating meticulous scrutiny of server security and privacy protocols.Nevertheless,considering the widespread availability of multimedia tools,the preservation of digital data integrity surpasses the significance of compression alone.In response to this concern,we propose a secure storage and transmission solution for compressed medical image sequences,such as ultrasound images,utilizing a motion vector watermarking scheme.The watermark is generated employing an error-correcting code known as Bose-Chaudhuri-Hocquenghem(BCH)and is subsequently embedded into the compressed sequence via block-based motion vectors.In the process of watermark embedding,motion vectors are selected based on their magnitude and phase angle.When embedding watermarks,no specific spatial area,such as a region of interest(ROI),is used in the images.The embedding of watermark bits is dependent on motion vectors.Although reversible watermarking allows the restoration of the original image sequences,we use the irreversible watermarking method.The reason for this is that the use of reversible watermarks may impede the claims of ownership and legal rights.The restoration of original data or images may call into question ownership or other legal claims.The peak signal-to-noise ratio(PSNR)and structural similarity index(SSIM)serve as metrics for evaluating the watermarked image quality.Across all images,the PSNR value exceeds 46 dB,and the SSIM value exceeds 0.92.Experimental results substantiate the efficacy of the proposed technique in preserving data integrity.
文摘Since real world communication channels are not error free, the coded data transmitted on them may be corrupted, and block based image coding systems are vulnerable to transmission impairment. So the best neighborhood match method using genetic algorithm is used to conceal the error blocks. Experimental results show that the searching space can be greatly reduced by using genetic algorithm compared with exhaustive searching method, and good image quality is achieved. The peak signal noise ratios(PSNRs) of the restored images are increased greatly.
基金supported by the National Natural Science Foundation of China(6157206361401308)+6 种基金the Fundamental Research Funds for the Central Universities(2016YJS039)the Natural Science Foundation of Hebei Province(F2016201142F2016201187)the Natural Social Foundation of Hebei Province(HB15TQ015)the Science Research Project of Hebei Province(QN2016085ZC2016040)the Natural Science Foundation of Hebei University(2014-303)
文摘Fusion methods based on multi-scale transforms have become the mainstream of the pixel-level image fusion. However,most of these methods cannot fully exploit spatial domain information of source images, which lead to the degradation of image.This paper presents a fusion framework based on block-matching and 3D(BM3D) multi-scale transform. The algorithm first divides the image into different blocks and groups these 2D image blocks into 3D arrays by their similarity. Then it uses a 3D transform which consists of a 2D multi-scale and a 1D transform to transfer the arrays into transform coefficients, and then the obtained low-and high-coefficients are fused by different fusion rules. The final fused image is obtained from a series of fused 3D image block groups after the inverse transform by using an aggregation process. In the experimental part, we comparatively analyze some existing algorithms and the using of different transforms, e.g. non-subsampled Contourlet transform(NSCT), non-subsampled Shearlet transform(NSST), in the 3D transform step. Experimental results show that the proposed fusion framework can not only improve subjective visual effect, but also obtain better objective evaluation criteria than state-of-the-art methods.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61370145,61173183,and 60973152)the Doctoral Program Foundation of Institution of Higher Education of China(Grant No.20070141014)+2 种基金the Program for Liaoning Excellent Talents in University,China(Grant No.LR2012003)the National Natural Science Foundation of Liaoning Province,China(Grant No.20082165)the Fundamental Research Funds for the Central Universities,China(Grant No.DUT12JB06)
文摘In this paper, a fast image encryption algorithm is proposed, in which the shuffling and diffusion is performed simul- taneously. The cipher-text image is divided into blocks and each block has k x k pixels, while the pixels of the plain-text are scanned one by one. Four logistic maps are used to generate the encryption key stream and the new place in the cipher image of plain image pixels, including the row and column of the block which the pixel belongs to and the place where the pixel would be placed in the block. After encrypting each pixel, the initial conditions of logistic maps would be changed ac- cording to the encrypted pixel's value; after encrypting each row of plain image, the initial condition would also be changed by the skew tent map. At last, it is illustrated that this algorithm has a faster speed, big key space, and better properties in withstanding differential attacks, statistical analysis, known plaintext, and chosen plaintext attacks.
基金supported by Balochistan University of Engineering and Technology,Khuzdar,Balochistan,Pakistan.
文摘Medical image super-resolution is a fundamental challenge due to absorption and scattering in tissues.These challenges are increasing the interest in the quality of medical images.Recent research has proven that the rapid progress in convolutional neural networks(CNNs)has achieved superior performance in the area of medical image super-resolution.However,the traditional CNN approaches use interpolation techniques as a preprocessing stage to enlarge low-resolution magnetic resonance(MR)images,adding extra noise in the models and more memory consumption.Furthermore,conventional deep CNN approaches used layers in series-wise connection to create the deeper mode,because this later end layer cannot receive complete information and work as a dead layer.In this paper,we propose Inception-ResNet-based Network for MRI Image Super-Resolution known as IRMRIS.In our proposed approach,a bicubic interpolation is replaced with a deconvolution layer to learn the upsampling filters.Furthermore,a residual skip connection with the Inception block is used to reconstruct a high-resolution output image from a low-quality input image.Quantitative and qualitative evaluations of the proposed method are supported through extensive experiments in reconstructing sharper and clean texture details as compared to the state-of-the-art methods.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61173183, 60973152, and 60573172)the Doctoral Program Foundation of Institution of Higher Education of China (Grant No. 20070141014)+2 种基金the Program for Excellent Talents in Universities of Liaoning Province, China (Grant No. LR2012003)the Natural Science Foundation of Liaoning Province, China (Grant No. 20082165)the Fundamental Research Funds for the Central Universities of China (Grant No. DUT12JB06)
文摘In this paper, we propose a novel block cryptographic scheme based on a spatiotemporal chaotic system and a chaotic neural network (CNN). The employed CNN comprises a 4-neuron layer called a chaotic neuron layer (CNL), where the spatiotemporal chaotic system participates in generating its weight matrix and other parameters. The spatiotemporal chaotic system used in our scheme is the typical coupled map lattice (CML), which can be easily implemented in parallel by hard- ware. A 160-bit-long binary sequence is used to generate the initial conditions of the CML. The decryption process is symmetric relative to the encryption process. Theoretical analysis and experimental results prove that the block cryptosys- tem is secure and practical, and suitable for image encryption.
基金This research was funded by College Student Innovation and Entrepreneurship Training Program,Grant Number 2021055Z and S202110082031the Special Project for Cultivating Scientific and Technological Innovation Ability of College and Middle School Students in Hebei Province,Grant Number 2021H011404.
文摘At present,underwater terrain images are all strip-shaped small fragment images preprocessed by the side-scan sonar imaging system.However,the processed underwater terrain images have inconspicuous and few feature points.In order to better realize the stitching of underwater terrain images and solve the problems of slow traditional image stitching speed,we proposed an improved algorithm for underwater terrain image stitching based on spatial gradient feature block.First,the spatial gradient fuzzy C-Means algorithm is used to divide the underwater terrain image into feature blocks with the fusion of spatial gradient information.The accelerated-KAZE(AKAZE)algorithm is used to combine the feature block information to match the reference image and the target image.Then,the random sample consensus(RANSAC)is applied to optimize the matching results.Finally,image fusion is performed with the global homography and the optimal seam-line method to improve the accuracy of image overlay fusion.The experimental results show that the proposed method in this paper effectively divides images into feature blocks by combining spatial information and gradient information,which not only solves the problem of stitching failure of underwater terrain images due to unobvious features,and further reduces the sensitivity to noise,but also effectively reduces the iterative calculation in the feature point matching process of the traditional method,and improves the stitching speed.Ghosting and shape warping are significantly eliminated by re-optimizing the overlap of the image.
文摘The purpose of this paper is to show the preconditioned BMinPert algorithm and analyse the practical implementation. Then a posteriori backward error for BGMRES is given. Furthermore, we discuss their applications in color image restoration. The key differences between BMinPert and other methods such as BFGMRES-S(m, p<sub>f</sub>), GsGMRES and BGMRES are illustrated with numerical experiments which expound the advantages of BMinPert in the presence of sensitive data with ill-condition problems.
文摘The substitution box(S-box)is a fundamentally important component of symmetric key cryptosystem.An S-box is a primary source of non-linearity in modern block ciphers,and it resists the linear attack.Various approaches have been adopted to construct S-boxes.S-boxes are commonly constructed over commutative and associative algebraic structures including Galois fields,unitary commutative rings and cyclic and non-cyclic finite groups.In this paper,first a non-associative ring of order 512 is obtained by using computational techniques,and then by this ring a triplet of 8×8 S-boxes is designed.The motivation behind the designing of these S-boxes is to upsurge the robustness and broaden the key space due to non-associative and noncommutative behavior of the algebraic structure under consideration.A novel color image encryption application is anticipated in which initially these 3 S-boxes are being used to produce confusion in three layers of a standard RGB image.However,for the sake of diffusion 3D Arnold chaotic map is used in the proposed encryption scheme.A comparison with some of existing chaos and S-box dependent color image encryption schemes specs the performance results of the anticipated RGB image encryption and observed as approaching the standard prime level.
文摘A block difference compression algorithm based on block PSNR, Which is one of the parameters of image quality is presented for image sequence processing. This algorithm adopts classical JPEG method in intra-frame coding, and processes 8×8 blocks of inter-frame with different methods depending on the results from the current PSNR compared with a threshold. The calculation of threshold and the situation of error accumulation based on different thresholds as well as the structure of code stream are also presented. The advantage of this algorithm is the reduction of the large operation volume during inter-frame processing.
文摘Block adjustment for satellite images cannot be solved with weak convergence geometric conditions,therefore a plane block adjustment method to improve the targeting precision of images is proposed utilizing DEM as height constraint plane block adjustment method.First,a rational function model with affine transformation is selected as the mathematical model of the satellite image plane block adjustment.Second,to update the ground coordinates of tie points(TPs),the plane coordinates of TPs are only solved in the adjustment process.Elevation values are obtained by using DEM interpolation.Finally,the plane coordinates of all TPs and orientation parameters of all satellite images are solved through plane block adjustment with a few ground control points ZY-3 nadir images for two regions are tested for plane block adjustment while ZY-3 forward-nadir-back images of the same two regions are tested for stereo block adjustment.A comparison indicates that almost the same accuracy can be obtained with plane block adjustment support using a 1∶50 000 DEM and stereo block adjustment for ZY-3 images.For ZY-3 nadir images,almost no loss of plane block adjustment accuracy occurred when global DEM with 1 km grid and SRTM with 90 m grid replaced the 1∶50 000 DEM as elevation control,.Test results demonstrate the effectiveness and feasibility of the plane block adjustment method.
基金Project(60873230) supported by the National Natural Science Foundation of China
文摘To compress screen image sequence in real-time remote and interactive applications,a novel compression method is proposed.The proposed method is named as CABHG.CABHG employs hybrid coding schemes that consist of intra-frame and inter-frame coding modes.The intra-frame coding is a rate-distortion optimized adaptive block size that can be also used for the compression of a single screen image.The inter-frame coding utilizes hierarchical group of pictures(GOP) structure to improve system performance during random accesses and fast-backward scans.Experimental results demonstrate that the proposed CABHG method has approximately 47%-48% higher compression ratio and 46%-53% lower CPU utilization than professional screen image sequence codecs such as TechSmith Ensharpen codec and Sorenson 3 codec.Compared with general video codecs such as H.264 codec,XviD MPEG-4 codec and Apple's Animation codec,CABHG also shows 87%-88% higher compression ratio and 64%-81% lower CPU utilization than these general video codecs.
文摘Copy-move forgery is the most common type of digital image manipulation,in which the content from the same image is used to forge it.Such manipulations are performed to hide the desired information.Therefore,forgery detection methods are required to identify forged areas.We have introduced a novel method for features computation by employing a circular block-based method through local tetra pattern(LTrP)features to detect the single and multiple copy-move attacks from the images.The proposed method is applied over the circular blocks to efficiently and effectively deal with the post-processing operations.It also uses discrete wavelet transform(DWT)for dimension reduction.The obtained approximate image is distributed into circular blocks on which the LTrP algorithm is employed to calculate the feature vector as the LTrP provides detailed information about the image content by utilizing the direction-based relation of central pixel to its neighborhoods.Finally,Jeffreys and Matusita distance is used for similarity measurement.For the evaluation of the results,three datasets are used,namely MICC-F220,MICC-F2000,and CoMoFoD.Both the qualitative and quantitative analysis shows that the proposed method exhibits state-of-the-art performance under the presence of post-processing operations and can accurately locate single and multiple copy-move forgery attacks on the images.
文摘This paper proposes an electronic image stabilization algorithm based on efficient block matching on the plane. This algorithm uses a hexagonal search algorithm, and uses the bit-planes to estimate and compensate for the translational motion between video sequences at the same time;As for the rotary motion vector generated in the video sequences, in order to highlight the intensity change of the image sequence, the algorithm firstly conducts Laplace transform for the reference frame, then select a number of characteristics at the image edge to make block matching with the current frame, calculate and compensate for the rotational movement that may exist finally. Through theoretical analysis and simula-tion, we prove that, as for a mixed translational and rotational motion video sequences, the proposed algorithm can reduce required time for block matching computation ,while improving the accuracy of the electronic image stabilization.
基金Science and Technology Project of Guangdong Province(2006A10201003) 2005 Jinan University StartupProject(51205067) Soft Science Project of Guangdong Province(2006B70103011)
文摘Due to coarse quantization, block-based discrete cosine transform(BDCT) compression methods usually suffer from visible blocking artifacts at the block boundaries. A novel efficient de-blocking method in DCT domain is proposed. A specific criterion for edge detection is given, one-dimensional DCT is applied on each row of the adjacent blocks and the shifted block in smooth region, and the transform coefficients of the shifted block are modified by weighting the average of three coefficients of the block. Mean square difference of slope criterion is used to judge the efficiency of the proposed algorithm. Simulation results show that the new method not only obtains satisfactory image quality, but also maintains high frequency information.
文摘The identification of objects in binary images is a fundamental task in image analysis and pattern recognition tasks. The Euler number of a binary image is an important topological measure which is used as a feature in image analysis. In this paper, a very fast algorithm for the detection and localization of the objects and the computation of the Euler number of a binary image is proposed. The proposed algorithm operates in one scan of the image and is based on the Image Block Representation (IBR) scheme. The proposed algorithm is more efficient than conventional pixel based algorithms in terms of execution speed and representation of the extracted information.
文摘Image denoising has become one of the major forms of image enhancement methods that form the basis of image processing. Due to the inconsistencies in the machinery producing these signals, medical images tend to require these techniques. In real time, images do not contain a single noise, and instead they contain multiple types of noise distributions in several indistinct regions. This paper presents an image denoising method that uses Metaheuristics to perform noise identification. Adaptive block selection is used to identify and correct the noise contained in these blocks. Though the system uses a block selection scheme, modifications are performed on pixel- to-pixel basis and not on the entire blocks;hence the image accuracy is preserved. PSO is used to identify the noise distribution, and appropriate noise correction techniques are applied to denoise the images. Experiments were conducted using salt and pepper noise, Gaussian noise and a combination of both the noise in the same image. It was observed that the proposed method performed effectively on noise levels up-to 0.5 and was able to produce results with PSNR values ranging from 20 to 30 in most of the cases. Excellent reduction rates were observed on salt and pepper noise and moderate reduction rates were observed on Gaussian noise. Experimental results show that our proposed system has a wide range of applicability in any domain specific image denoising scenario, such as medical imaging, mammogram etc.
基金The National Natural Science Foundation of China(No.61133012)the Humanity and Social Science Foundation of the Ministry of Education(No.12YJCZH274)+1 种基金the Humanity and Social Science Foundation of Jiangxi Province(No.XW1502,TQ1503)the Science and Technology Project of Jiangxi Science and Technology Department(No.20121BBG70050,20142BBG70011)
文摘Dealing with issues such as too simple image features and word noise inference in product image sentence anmotation, a product image sentence annotation model focusing on image feature learning and key words summarization is described. Three kernel descriptors such as gradient, shape, and color are extracted, respectively. Feature late-fusion is executed in turn by the multiple kernel learning model to obtain more discriminant image features. Absolute rank and relative rank of the tag-rank model are used to boost the key words' weights. A new word integration algorithm named word sequence blocks building (WSBB) is designed to create N-gram word sequences. Sentences are generated according to the N-gram word sequences and predefined templates. Experimental results show that both the BLEU-1 scores and BLEU-2 scores of the sentences are superior to those of the state-of-art baselines.
文摘Blind forensics of JPEG image tampering as a kind of digital image blind forensics technology is gradually becoming a new research hotspot in the field of image security. Firstly, the main achievements of domestic and foreign scholars in the blind forensic technology of JPEG image tampering were briefly described. Then, according to the different methods of tampering and detection, the current detection was divided into two types: double JPEG compression detection and block effect inconsistency detection. This paper summarized the existing methods of JPEG image blind forensics detection, and analyzed the two methods. Finally, the existing problems and future research trends were analyzed and prospected to provide further theoretical support for the research of JPEG image blind forensics technology.
文摘This paper gives a new algorithm to enlarge images based on local matching. Its main advantage is capable of preserving the edge of the enlarged image and improving both the subjective effect and the objective effect.