The imaging of two supermassive black holes by the Event Horizon Telescope Collaboration proved to a new level the correctness of Einstein's general relativity,regarding its prediction of black hole shadows in the...The imaging of two supermassive black holes by the Event Horizon Telescope Collaboration proved to a new level the correctness of Einstein's general relativity,regarding its prediction of black hole shadows in the highly curved spacetime regime.展开更多
The Earth’s Free Core Nutation(FCN) causes Earth tides and forced nutation with frequencies close to the FCN that exhibit resonance effects.High-precision superconducting gravimeter(SG) and very long baseline interfe...The Earth’s Free Core Nutation(FCN) causes Earth tides and forced nutation with frequencies close to the FCN that exhibit resonance effects.High-precision superconducting gravimeter(SG) and very long baseline interferometry(VLBI) provide good observation techniques for detecting the FCN parameters.However,some choices in data processing and solution procedures increase the uncertainty of the FCN parameters.In this study,we analyzed the differences and the effectiveness of weight function and ocean tide corrections in the FCN parameter detection using synthetic data,SG data from thirty-one stations,and the 10 celestial pole offset(CPO) series.The results show that significant discrepancies are caused by different computing options for a single SG station.The stacking method,which results in a variation of0.24-5 sidereal days(SDs) in the FCN period(T) and 10^(3)-10^(4) in the quality factor(Q) due to the selection of the weighting function and the ocean tide model(OTM),can effectively suppress this influence.The statistical analysis results of synthetic data shows that although different weight choices,while adjusting the proportion of diurnal tidal waves involved,do not significantly improve the accuracy of fitted FCN parameters from gravity observations.The study evaluated a series of OTMs using the loading correction efficiency.The fitting of FCN parameters can be improved by selecting the mean of appropriate OTMs based on the evaluation results.Through the estimation of the FCN parameters based on the forced nutation,it was found that the weight function P_(1) is more suitable than others,and different CPO series(after 2009) resulted in a difference of 0.4 SDs in the T and of 103 in the Q.We estimated the FCN parameters for SG(T=430.4±1.5 SDs and Q=1.52×10^(4)±2.5×10^(3)) and for VLBI(T=429.8±0.7 SDs,Q=1.88×10^(4)±2.1×10^(3)).展开更多
The seven co-located sites of the Crustal Movement Observation Network of China(CMONOC) in Shanghai, Wuhan, Kunming, Beijing, Xi'an, Changchun, and Urumqi are equipped with Global Navigation Satellite System(GNSS...The seven co-located sites of the Crustal Movement Observation Network of China(CMONOC) in Shanghai, Wuhan, Kunming, Beijing, Xi'an, Changchun, and Urumqi are equipped with Global Navigation Satellite System(GNSS), very long baseline interferometry(VLBI), and satellite laser ranging(SLR) equipment. Co-location surveying of these sites was performed in 2012 and the accuracies of the solved tie vectors are approximately 5 mm.This paper proposes a mathematical model that handles the least squares adjustment of the 3D control network and calculates the tie vectors in one step, using all the available constraints in the adjustment. Using the new mathematical model, local tie vectors can be more precisely determined and their covariance more reasonably estimated.展开更多
The precise orbit determination of ChanE-2 is the most important issue for successful mission and scientific applications, while the lunar gravity field model with big un- certainties has large effect on Chang'E-2 or...The precise orbit determination of ChanE-2 is the most important issue for successful mission and scientific applications, while the lunar gravity field model with big un- certainties has large effect on Chang'E-2 orbit determination. Recently, several new gravity models have been produced using the latest lunar satellites tracking data, such as LP16SP, SGM1SOJ, GL0900D and GRGM900C. In this paper, the four gravity models mentioned above were evaluated through the power spectra analysis, admittance and coherence analysis. Effect of four lunar gravity models on Chang'E-2 orbit determination performance is investigated and assessed using Very Long Baseline Interferometry (VLBI) tracking data. The overlap orbit analysis, the posteriori data residual, and the orbit prediction are used to evaluate the orbit precision between successive arcs. The LPI65P model has better orbit overlap performance than the SGM150J model for Chang'E-2100 km x 100 km orbit and the SGM150J model performs better for Chang'E-2100 km x 15 km orbit, while GL0900D and GRGM900C have the best orbit overlap results for the two types of Chang'E-2 orbit. For the orbit prediction, GRGM900C has the best orbit prediction performance in the four models.展开更多
在国际甚长基线干涉测量(very long baseline interferometry,VLBI)大地测量与天体测量服务组织协调下,首次利用隶属于VLBI全球观测系统(VLBI global observing system,VGOS)的美国Kokee和德国Wettzell观测站及并置的传统VLBI观测站开...在国际甚长基线干涉测量(very long baseline interferometry,VLBI)大地测量与天体测量服务组织协调下,首次利用隶属于VLBI全球观测系统(VLBI global observing system,VGOS)的美国Kokee和德国Wettzell观测站及并置的传统VLBI观测站开展了世界时(universal time,UT1)联合测量试验,观测数据在上海VLBI中心进行了干涉处理。结果表明,VGOS超宽带观测系统的UT1测量精度约为7μs,并置基线的传统S/X双频系统测量精度约为14μs,VGOS系统的UT1解算结果优于S/X系统。通过试验建立了从相关处理、相关后处理到UT1参数解算的完整数据处理流程,验证了上海VLBI相关处理机的VGOS数据处理能力,为承担国内和国际VGOS观测数据的相关处理任务奠定了基础。展开更多
文摘The imaging of two supermassive black holes by the Event Horizon Telescope Collaboration proved to a new level the correctness of Einstein's general relativity,regarding its prediction of black hole shadows in the highly curved spacetime regime.
基金supported by the Open Fund of Hubei Luojia Laboratory (No. 220100033)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB41000000)+1 种基金National Natural Science Foundation of China (Grant Nos. 42174108, 41874094, 42192535 and 42242015)the Young Top-notch Talent Cultivation Program of Hubei Province。
文摘The Earth’s Free Core Nutation(FCN) causes Earth tides and forced nutation with frequencies close to the FCN that exhibit resonance effects.High-precision superconducting gravimeter(SG) and very long baseline interferometry(VLBI) provide good observation techniques for detecting the FCN parameters.However,some choices in data processing and solution procedures increase the uncertainty of the FCN parameters.In this study,we analyzed the differences and the effectiveness of weight function and ocean tide corrections in the FCN parameter detection using synthetic data,SG data from thirty-one stations,and the 10 celestial pole offset(CPO) series.The results show that significant discrepancies are caused by different computing options for a single SG station.The stacking method,which results in a variation of0.24-5 sidereal days(SDs) in the FCN period(T) and 10^(3)-10^(4) in the quality factor(Q) due to the selection of the weighting function and the ocean tide model(OTM),can effectively suppress this influence.The statistical analysis results of synthetic data shows that although different weight choices,while adjusting the proportion of diurnal tidal waves involved,do not significantly improve the accuracy of fitted FCN parameters from gravity observations.The study evaluated a series of OTMs using the loading correction efficiency.The fitting of FCN parameters can be improved by selecting the mean of appropriate OTMs based on the evaluation results.Through the estimation of the FCN parameters based on the forced nutation,it was found that the weight function P_(1) is more suitable than others,and different CPO series(after 2009) resulted in a difference of 0.4 SDs in the T and of 103 in the Q.We estimated the FCN parameters for SG(T=430.4±1.5 SDs and Q=1.52×10^(4)±2.5×10^(3)) and for VLBI(T=429.8±0.7 SDs,Q=1.88×10^(4)±2.1×10^(3)).
基金sponsored by the Crustal Movement Observation Network of China(CMONOC)partially supported by the Natural Science Foundation of China(41274035,41174023)
文摘The seven co-located sites of the Crustal Movement Observation Network of China(CMONOC) in Shanghai, Wuhan, Kunming, Beijing, Xi'an, Changchun, and Urumqi are equipped with Global Navigation Satellite System(GNSS), very long baseline interferometry(VLBI), and satellite laser ranging(SLR) equipment. Co-location surveying of these sites was performed in 2012 and the accuracies of the solved tie vectors are approximately 5 mm.This paper proposes a mathematical model that handles the least squares adjustment of the 3D control network and calculates the tie vectors in one step, using all the available constraints in the adjustment. Using the new mathematical model, local tie vectors can be more precisely determined and their covariance more reasonably estimated.
基金funded by National Natural Science Foundation of China(41374012)
文摘The precise orbit determination of ChanE-2 is the most important issue for successful mission and scientific applications, while the lunar gravity field model with big un- certainties has large effect on Chang'E-2 orbit determination. Recently, several new gravity models have been produced using the latest lunar satellites tracking data, such as LP16SP, SGM1SOJ, GL0900D and GRGM900C. In this paper, the four gravity models mentioned above were evaluated through the power spectra analysis, admittance and coherence analysis. Effect of four lunar gravity models on Chang'E-2 orbit determination performance is investigated and assessed using Very Long Baseline Interferometry (VLBI) tracking data. The overlap orbit analysis, the posteriori data residual, and the orbit prediction are used to evaluate the orbit precision between successive arcs. The LPI65P model has better orbit overlap performance than the SGM150J model for Chang'E-2100 km x 100 km orbit and the SGM150J model performs better for Chang'E-2100 km x 15 km orbit, while GL0900D and GRGM900C have the best orbit overlap results for the two types of Chang'E-2 orbit. For the orbit prediction, GRGM900C has the best orbit prediction performance in the four models.
文摘在国际甚长基线干涉测量(very long baseline interferometry,VLBI)大地测量与天体测量服务组织协调下,首次利用隶属于VLBI全球观测系统(VLBI global observing system,VGOS)的美国Kokee和德国Wettzell观测站及并置的传统VLBI观测站开展了世界时(universal time,UT1)联合测量试验,观测数据在上海VLBI中心进行了干涉处理。结果表明,VGOS超宽带观测系统的UT1测量精度约为7μs,并置基线的传统S/X双频系统测量精度约为14μs,VGOS系统的UT1解算结果优于S/X系统。通过试验建立了从相关处理、相关后处理到UT1参数解算的完整数据处理流程,验证了上海VLBI相关处理机的VGOS数据处理能力,为承担国内和国际VGOS观测数据的相关处理任务奠定了基础。