BiVO_(4)porous spheres modified by ZnO were designed and synthesized using a facile two-step method.The resulting ZnO/BiVO_(4)composite catalysts have shown remarkable efficiency as piezoelectric catalysts for degradi...BiVO_(4)porous spheres modified by ZnO were designed and synthesized using a facile two-step method.The resulting ZnO/BiVO_(4)composite catalysts have shown remarkable efficiency as piezoelectric catalysts for degrading Rhodamine B(RhB)unde mechanical vibrations,they exhibit superior activity compared to pure ZnO.The 40wt%ZnO/BiVO_(4)heterojunction composite displayed the highest activity,along with good stability and recyclability.The enhanced piezoelectric catalytic activity can be attributed to the form ation of an I-scheme heterojunction structure,which can effectively inhibit the electron-hole recombination.Furthermore,hole(h+)and superoxide radical(·O_(2)^(-))are proved to be the primary active species.Therefore,ZnO/BiVO_(4)stands as an efficient and stable piezoelectric catalyst with broad potential application in the field of environmental water pollution treatment.展开更多
Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp...Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.展开更多
With its complex nonlinear dynamic behavior,the tristable system has shown excellent performance in areas such as energy harvesting and vibration suppression,and has attracted a lot of attention.In this paper,an asymm...With its complex nonlinear dynamic behavior,the tristable system has shown excellent performance in areas such as energy harvesting and vibration suppression,and has attracted a lot of attention.In this paper,an asymmetric tristable design is proposed to improve the vibration suppression efficiency of nonlinear energy sinks(NESs)for the first time.The proposed asymmetric tristable NES(ATNES)is composed of a pair of oblique springs and a vertical spring.Then,the three stable states,symmetric and asymmetric,can be achieved by the adjustment of the distance and stiffness asymmetry of the oblique springs.The governing equations of a linear oscillator(LO)coupled with the ATNES are derived.The approximate analytical solution to the coupled system is obtained by the harmonic balance method(HBM)and verified numerically.The vibration suppression efficiency of three types of ATNES is compared.The results show that the asymmetric design can improve the efficiency of vibration reduction through comparing the chaotic motion of the NES oscillator between asymmetric steady states.In addition,compared with the symmetrical tristable NES(TNES),the ATNES can effectively control smaller structural vibrations.In other words,the ATNES can effectively solve the threshold problem of TNES failure to weak excitation.Therefore,this paper reveals the vibration reduction mechanism of the ATNES,and provides a pathway to expand the effective excitation amplitude range of the NES.展开更多
The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches....The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell.展开更多
The fatigue damage caused by flow-induced vibration(FIV)is one of the major concerns for multiple cylindrical structures in many engineering applications.The FIV suppression is of great importance for the security of ...The fatigue damage caused by flow-induced vibration(FIV)is one of the major concerns for multiple cylindrical structures in many engineering applications.The FIV suppression is of great importance for the security of many cylindrical structures.Many active and passive control methods have been employed for the vibration suppression of an isolated cylinder undergoing vortex-induced vibrations(VIV).The FIV suppression methods are mainly extended to the multiple cylinders from the vibration control of the isolated cylinder.Due to the mutual interference between the multiple cylinders,the FIV mechanism is more complex than the VIV mechanism,which makes a great challenge for the FIV suppression.Some efforts have been devoted to vibration suppression of multiple cylinder systems undergoing FIV over the past two decades.The control methods,such as helical strakes,splitter plates,control rods and flexible sheets,are not always effective,depending on many influence factors,such as the spacing ratio,the arrangement geometrical shape,the flow velocity and the parameters of the vibration control devices.The FIV response,hydrodynamic features and wake patterns of the multiple cylinders equipped with vibration control devices are reviewed and summarized.The FIV suppression efficiency of the vibration control methods are analyzed and compared considering different influence factors.Further research on the FIV suppression of multiple cylinders is suggested to provide insight for the development of FIV control methods and promote engineering applications of FIV control methods.展开更多
Vibration quality is a vital indicator for assessing the progress of modern equipment.The dynamic vibration absorber(DVA)based on the acoustic black hole(ABH)feature is a new passive control method that manipulates wa...Vibration quality is a vital indicator for assessing the progress of modern equipment.The dynamic vibration absorber(DVA)based on the acoustic black hole(ABH)feature is a new passive control method that manipulates waves.It offers efficient energy focalization and broad-spectrum vibration suppression,making it highly promising for applications in large equipment such as aircraft,trains,and ships.Despite previous advancements in ABH-DVA development,certain challenges remain,particularly in ensuring effective coupling with host structures during control.To address these issues,this study proposes a partitioned ABH-featured dynamic vibration absorber(PABH-DVA)with partitions in the radial direction of the disc.By employing a plate as the host structure,simulations and experiments were conducted,demonstrating that the PABH-DVA outperforms the original symmetric ABH-DVA in terms of damping performance.The study also calculated and compared the coupling coefficients of the two ABH-DVAs to uncover the mechanism behind the enhanced damping.Simulation results revealed that the PABH-DVA exhibits more coupled modes,occasionally with lower coupling coefficients than the symmetric ABH-DVA.The influence of frequency ratio and modal mass was further analyzed to explain the reasons behind the PABH-DVA's superior damping performance.Additionally,the study discussed the impact of the number of slits and their orientation.This research further explains the coupling mechanism between the ABH-DVA and the controlled structure,and provides new ideas for the further application of ABH in engineering.展开更多
Tibetan singing bowls emit low-frequency sounds and produce perceptible harmonic tones and vibrations through manual tapping.The sounds the singing bowls produce have been shown to enhance relaxation and reduce anxiet...Tibetan singing bowls emit low-frequency sounds and produce perceptible harmonic tones and vibrations through manual tapping.The sounds the singing bowls produce have been shown to enhance relaxation and reduce anxiety.However,the underlying mechanism remains unclear.In this study,we used chronic restraint stress or sleep deprivation to establish mouse models of anxiety that exhibit anxiety-like behaviors.We then supplied treatment with singing bowls in a bottomless cage placed on the top of a cushion.We found that unlike in humans,the combination of harmonic tones and vibrations did not improve anxietylike behaviors in mice,while individual vibration components did.Additionally,the vibration of singing bowls increased the level of N-methyl-D-aspartate receptor 1 in the somatosensory cortex and prefrontal cortex of the mice,decreased the level ofγ-aminobutyric acid A(GABA)receptorα1 subtype,reduced the level of CaMKII in the prefrontal cortex,and increased the number of GABAergic interneurons.At the same time,electrophysiological tests showed that the vibration of singing bowls significantly reduced the abnormal low-frequency gamma oscillation peak frequency in the medial prefrontal cortex caused by stress restraint pressure and sleep deprivation.Results from this study indicate that the vibration of singing bowls can alleviate anxiety-like behaviors by reducing abnormal molecular and electrophysiological events in somatosensory and medial prefrontal cortex.展开更多
When investigating the vortex-induced vibration(VIV)of marine risers,extrapolating the dynamic response on the entire length based on limited sensor measurements is a crucial step in both laboratory experiments and fa...When investigating the vortex-induced vibration(VIV)of marine risers,extrapolating the dynamic response on the entire length based on limited sensor measurements is a crucial step in both laboratory experiments and fatigue monitoring of real risers.The problem is conventionally solved using the modal decomposition method,based on the principle that the response can be approximated by a weighted sum of limited vibration modes.However,the method is not valid when the problem is underdetermined,i.e.,the number of unknown mode weights is more than the number of known measurements.This study proposed a sparse modal decomposition method based on the compressed sensing theory and the Compressive Sampling Matching Pursuit(Co Sa MP)algorithm,exploiting the sparsity of VIV in the modal space.In the validation study based on high-order VIV experiment data,the proposed method successfully reconstructed the response using only seven acceleration measurements when the conventional methods failed.A primary advantage of the proposed method is that it offers a completely data-driven approach for the underdetermined VIV reconstruction problem,which is more favorable than existing model-dependent solutions for many practical applications such as riser structural health monitoring.展开更多
An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control...An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control algorithm can update the control law online through real-time data to make the controller adapt to the environment and improve the control precision.Specifically,based on the adaptive backstepping framework,virtual control laws and Lyapunov functions are designed for each subsystem.Three direction interference observers are designed to track the timevarying boundary disturbance.On this basis,the inverse of the dead zone and linear state transformation are used to compensate for the original system and eliminate the adverse effects of the dead zone.In addition,the stability of the closed-loop system is proven by Lyapunov stability theory.All the system states are bounded,and the vibration offset of the riser converges to a small area of the initial position.Finally,four examples of flexible marine risers are simulated in MATLAB to verify the effectiveness of the proposed controller.展开更多
This study is focused on the effect of vibration induced by moving trains in tunnels on the surrounding ground and structures.A three-dimensional finite element model is established for a one-track railway tunnel and ...This study is focused on the effect of vibration induced by moving trains in tunnels on the surrounding ground and structures.A three-dimensional finite element model is established for a one-track railway tunnel and an adjacent twelve-storey building frame by using commercial software Midas GTS-NX(2019)and Midas Gen.This study considered the moving load effect of a complete train,which varies with space as well as with time.The effect of factors such as train speed,overburden pressure on the tunnel and variation in soil properties are studied in the time domain.As a result,the variations in horizontal and vertical acceleration for two different sites,i.e.,the free ground surface(without structure)and the area containing the structure,are compared.Also,the displacement pattern of the raft foundation is plotted for different train velocities.At lower speeds,the heaving phenomenon is negligible,but as the speed increases,both the heaving and differential settlement increase in the foundation.This study demonstrates that the effect of moving train vibrations should be considered in the design of new nearby structures and proper ground improvement should be considered for existing structures.展开更多
High-static-low-dynamic-stiffness(HSLDS)vibration isolators with buckling beams have been widely used to isolate external vibrations.An active adjustable device composed of proportion integration(PI)active controllers...High-static-low-dynamic-stiffness(HSLDS)vibration isolators with buckling beams have been widely used to isolate external vibrations.An active adjustable device composed of proportion integration(PI)active controllers and piezoelectric actuators is proposed for improving the negative stiffness stroke of buckling beams.A nonlinear output frequency response function is used to analyze the effect of the vibration reduction.The prototype of the active HSLDS device is built,and the verification experiment is conducted.The results show that compared with the traditional HSLDS vibration isolator,the active HSLDS device can broaden the isolation frequency bandwidth,and effectively reduce the resonant amplitude by adjusting the active control parameters.The maximum vibration reduction rate of the active HSLDS vibration isolator can attain 89.9%,and the resonant frequency can be reduced from 31.08 Hz to 13.28 Hz.Therefore,this paper devotes to providing a new design scheme for enhanced HSLDS vibration isolators.展开更多
The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are a...The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are analyzed.The frequency range of self-excited vibrations is investigated from the energy point of view.The phenomenon of self-excited vibrations is elaborated with the phase trajectory.The corresponding control strategies are briefly analyzed with respect to the vibration mechanism.The results show that when the levitation objects collide with the mechanical interface,the system's vibration frequency becomes larger with the decrease in the collision gap;when the vibration frequency exceeds the critical frequency,the electromagnetic system continues to provide energy to the system,and the collision interface continuously dissipates energy so that the system enters the self-excited vibration state.展开更多
The research of rolling mill vibration theory has always been a scientific problem in the field of rolling forming,which is very important to the quality of sheet metal and the stable operation of equipment.The essenc...The research of rolling mill vibration theory has always been a scientific problem in the field of rolling forming,which is very important to the quality of sheet metal and the stable operation of equipment.The essence of rolling mill vibration is the transfer of energy,which is generated from inside and outside.Based on particle damping technology,a dynamic vibration absorber(DVA)is proposed to control the vertical vibration of roll in the rolling process from the point of energy transfer and dissipation.A nonlinear vibration equation for the DVA-roller system is solved by the incremental harmonic balance method.Based on the obtained solutions,the effects of the basic parameters of the DVA on the properties of vibration transmission are investigated by using the power flow method,which provides theoretical guidance for the selection of the basic parameters of the DVA.Furthermore,the influence of the parameters of the particles on the overall dissipation of energy of the particle group is analyzed in a more systematic way,which provides a reference for the selection of the material and diameter and other parameters of the particles in the practical application of the DVA.The effect of particle parameters on roll amplitude inhibition is studied by experiments.The experimental results agree with the theoretical analysis,which proves the correctness of the theoretical analysis and the feasibility of the particle damping absorber.This research proposes a particle damping absorber to absorb and dissipate the energy transfer in rolling process,which provides a new idea for nonlinear dynamic analysis and stability control of rolling mills,and has important guiding significance for practical production.展开更多
The purpose of this study is to investigate the suppression effect of a nonlinear energy sink(NES)on the wind-vortex-induced pipe vibration and explore the influence of damping,stiffness,and NES installation position ...The purpose of this study is to investigate the suppression effect of a nonlinear energy sink(NES)on the wind-vortex-induced pipe vibration and explore the influence of damping,stiffness,and NES installation position on the suppression effect.In this work,the wind-vortex-induced vibration of an elastic pipe of a deepwater jacket was studied,and vibrations were suppressed by using an NES.A van der Pol wake oscillator was used to simulate vortex-induced force,and the dynamic equation of the pipe considering the NES was established.The Galerkin method was applied to discretize the motion equation,and the vortex-induced vibration(VIV)of the pipe at reduced wind speeds was numerically analyzed.The novelty of this research is that particle swarm optimization was used to optimize the parameters of the NES to improve vibration suppression.The influence of the installation position,nonlinear stiffness,and damping parameters of the NES on vibration suppression was analyzed.Results showed that the optimized parameter combinations of the NES can effectively reduce wind-vortex-induced pipe vibration.The installation position of the NES had a significant effect on vibration suppression,and the midpoint of the pipe was the optimal NES installation position.An increase in stiffness or a 10% decrease in damping may cause vibration suppression failure.The results of this study provide some guidance for VIV suppression in deepwater jacket pipes.展开更多
With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests...With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests from both the industrial and academic communities.Input shaping(IS),as a simple and effective feedforward method,is greatly demanded in DDVC methods.It convolves the desired input command with impulse sequence without requiring parametric dynamics and the closed-loop system structure,thereby suppressing the residual vibration separately.Based on a thorough investigation into the state-of-the-art DDVC methods,this survey has made the following efforts:1)Introducing the IS theory and typical input shapers;2)Categorizing recent progress of DDVC methods;3)Summarizing commonly adopted metrics for DDVC;and 4)Discussing the engineering applications and future trends of DDVC.By doing so,this study provides a systematic and comprehensive overview of existing DDVC methods from designing to optimizing perspectives,aiming at promoting future research regarding this emerging and vital issue.展开更多
In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation pr...In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation properties,which is configured by hybrid arc and sharp-angle convergent star-shaped lattices.The effect of the dispersion relation and the bandgap characteristic for the scatterers in star-shaped are simulated and analyzed.The target bandgap width is extended by optimizing the geometry parameters of arc and sharp-angle convergent lattices.The proposed metamaterial configured by optimized hybrid lattices exhibits remarkable broad bandgap characteristics by bandgap complementarity,and the simulation results verify a 99%vibration attenuation amplitude can be obtained in the frequency of20 k Hz—100 k Hz.After the fabrication of the proposed hybrid configurational star-shaped metamaterial by 3D printing technique,the transmission loss experiments are performed,and the experimental results indicate that the fabricated metamaterial has the characteristics of broadband vibration attenuation and an amplitude greater than 85%attenuation for the target frequency.These results demonstrate that the hybrid configurational star-shaped metamaterials can effectively widen the bandgap and realize high efficiency attenuation,which has capability for the vibration attenuation in the application of highprecise equipment.展开更多
Broadband vibration attenuation is a challenging task in engineering since it is difficult to achieve low-frequency and broadband vibration control simultaneously.To solve this problem,this paper designs a piezoelectr...Broadband vibration attenuation is a challenging task in engineering since it is difficult to achieve low-frequency and broadband vibration control simultaneously.To solve this problem,this paper designs a piezoelectric meta-beam with unidirectional electric circuits,exhibiting promising broadband attenuation capabilities.An analytical model in a closed form for achieving the solution of unidirectional vibration transmission of the designed meta-beam is developed based on the state-space transfer function method.The method can analyze the forward and backward vibration transmission of the piezoelectric meta-beam in a unified manner,providing reliable dynamics solutions of the beam.The analytical results indicate that the meta-beam effectively reduces the unidirectional vibration across a broad low-frequency range,which is also verified by the solutions obtained from finite element analyses.The designed meta-beam and the proposed analytical method facilitate a comprehensive investigation into the distinctive unidirectional transmission behavior and superb broadband vibration attenuation performance.展开更多
Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV...Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV+MV treatments can significantly refine and fragmentize the microstructures.In addition,UV treatment can significantly passivate the primary Mn-rich Al15Mn3Si2 intermetallics.The formation mechanisms of refinement and passivation of the grains and non-dendrite particles were discussed.Compared with the gravity die-cast alloys,the UV and UV+MV treated alloys exhibit improved tensile and creep resistance at room and elevated temperatures.These results can be attributed to the refinement of theα(Al)grains and the secondary intermetallics,the increased proportion of refined heat-resistant precipitates,and the formation of nano-sized Si particles.The ultimate tensile strength of the UV treated alloys at 350℃ exceeds that of commercial piston alloys.This indicates the high application potential of the developed piston alloys in density diesel engines.展开更多
As critical components of aircraft skins and rocket fuel storage tank shells,large thin-walled workpieces are susceptible to vibration and deformation during machining due to their weak local stiffness.To address thes...As critical components of aircraft skins and rocket fuel storage tank shells,large thin-walled workpieces are susceptible to vibration and deformation during machining due to their weak local stiffness.To address these challenges,we propose a novel tunable electromagnetic semi-active dynamic vibration absorber(ESADVA),which integrates with a magnetic suction follower to form a followed ESADVA(follow-ESADVA)for mirror milling.This system combines a tunable magnet oscillator with a follower,enabling real-time vibration absorption and condition feedback throughout the milling process.Additionally,the device supports self-sensing and frequency adjustment by providing feedback to a linear actuator,which alters the distance between magnets.This resolves the traditional issue of being unable to directly monitor vibration at the machining point due to space constraints and tool interference.The frequency shift characteristics and vibration absorption performance are comprehensively investigated.Theoretical and experimental results demonstrate that the prototyped follow-ESADVA achieves frequency synchronization with the milling tool,resulting in a vibration suppression rate of approximately 47.57%.Moreover,the roughness of the machined surface decreases by18.95%,significantly enhancing the surface quality.The results of this work pave the way for higher-quality machined surfaces and a more stable mirror milling process.展开更多
A vibration energy harvester can harvest vibration energy in the environment and convert it into electrical energy to power the sensors in the Internet of Things.Human walking contains high-quality vibration energy,wh...A vibration energy harvester can harvest vibration energy in the environment and convert it into electrical energy to power the sensors in the Internet of Things.Human walking contains high-quality vibration energy,which serves as the energy source for vibration energy harvesters due to its abundant availability,high energy conversion efficiency,and environmental friendliness.It is difficult to harvest human walking vibration due to its low frequency.Converting the low-frequency vibration of human walking into high-frequency vibration has attracted attention.In previous studies,vibration energy harvesters typically increase frequency by raising excitation frequency or inducing free vibration.When walking frequency changes,the up-frequency method of raising the excitation frequency changes the voltage frequency,resulting in the best load resistance change and reducing the output power.The up-frequency method of inducing free vibration does not increase the external excitation frequency,which has relatively low output power.This paper designs a magnetostrictive vibration energy harvester with a rotating up-frequency structure.It consists of a rotating up-frequency structure,a magnetostrictive structure,coils,and bias magnets.The main body of the rotating up-frequency structure comprises a torsion bar and a flywheel with a dumbbell-shaped hole.The magnetostrictive structure includes four magnetostrictive metal sheets spliced by Galfenol and steel sheets.The torsion bar and flywheel interact to convert low-frequency linear vibration into rotating high-frequency excitation vibration of the flywheel.The flywheel plucks the magnetostrictive metal sheet with a high excitation frequency to generate free vibration.The vibration energy harvester increases the excitation frequency while inducing free vibration,which can effectively improve the output power.To characterize the excitation vibration and free vibration,based on the theory of Euler-Bernoulli beam theory,the vibration equation of the magnetostrictive metal sheet after being excited is given.According to the classical machine-magnetic coupling model and the Jiles-Atherton physical model,the relationship between stress and magnetization strength is derived.Combined with Faraday's law of electromagnetic induction,the distributed dynamic output voltage model is established.This model can predict the output voltage at different excitation frequencies.Based on this model,the mechanical-magnetic structural parameter optimization design is carried out.The parameters of the magnetostrictive metal sheet,the bias magnet,and the rotating up-frequency structure are determined.A comprehensive experimental system is established to test the device.The peak-to-peak voltage and output voltage signal by the proposed model are compared.The average relative deviation of the peak-to-peak voltage and the output voltage signal is 4.9%and 8.2%,respectively.The experimental results show that the output power is proportional to the excitation frequency.The optimum load resistance is always 800Ωas the excitation frequency changes,simplifying the impedance-matching process.The maximum peak-to-peak voltage of the device is 58.60 V,the maximum root mean square(RMS)voltage is 9.53 V,and the maximum RMS power is 56.20 mW.The magnetostrictive vibration energy harvester with a rotating up-frequency structure solves the problem of impedance matching,which improves the output power.The proposed distributed dynamic output voltage model can effectively predict the output characteristics.This study can provide structural and theoretical guidance for up-frequency structure vibration energy harvesters for human walking vibration.展开更多
基金financially supported by the National Natural Science Foundation of China(No.22272151)Public Welfare Technology Application Research Project of Jinhua City,China(No.2023-4-022)。
文摘BiVO_(4)porous spheres modified by ZnO were designed and synthesized using a facile two-step method.The resulting ZnO/BiVO_(4)composite catalysts have shown remarkable efficiency as piezoelectric catalysts for degrading Rhodamine B(RhB)unde mechanical vibrations,they exhibit superior activity compared to pure ZnO.The 40wt%ZnO/BiVO_(4)heterojunction composite displayed the highest activity,along with good stability and recyclability.The enhanced piezoelectric catalytic activity can be attributed to the form ation of an I-scheme heterojunction structure,which can effectively inhibit the electron-hole recombination.Furthermore,hole(h+)and superoxide radical(·O_(2)^(-))are proved to be the primary active species.Therefore,ZnO/BiVO_(4)stands as an efficient and stable piezoelectric catalyst with broad potential application in the field of environmental water pollution treatment.
文摘Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.
基金Project supported by the National Science Fund for Distinguished Young Scholars of China(No.12025204)the National Natural Science Foundation of China(No.12202038)。
文摘With its complex nonlinear dynamic behavior,the tristable system has shown excellent performance in areas such as energy harvesting and vibration suppression,and has attracted a lot of attention.In this paper,an asymmetric tristable design is proposed to improve the vibration suppression efficiency of nonlinear energy sinks(NESs)for the first time.The proposed asymmetric tristable NES(ATNES)is composed of a pair of oblique springs and a vertical spring.Then,the three stable states,symmetric and asymmetric,can be achieved by the adjustment of the distance and stiffness asymmetry of the oblique springs.The governing equations of a linear oscillator(LO)coupled with the ATNES are derived.The approximate analytical solution to the coupled system is obtained by the harmonic balance method(HBM)and verified numerically.The vibration suppression efficiency of three types of ATNES is compared.The results show that the asymmetric design can improve the efficiency of vibration reduction through comparing the chaotic motion of the NES oscillator between asymmetric steady states.In addition,compared with the symmetrical tristable NES(TNES),the ATNES can effectively control smaller structural vibrations.In other words,the ATNES can effectively solve the threshold problem of TNES failure to weak excitation.Therefore,this paper reveals the vibration reduction mechanism of the ATNES,and provides a pathway to expand the effective excitation amplitude range of the NES.
基金Project supported by the National Natural Science Foundation of China(Nos.11832002 and 12072201)。
文摘The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U2106223,51979193,52301352)。
文摘The fatigue damage caused by flow-induced vibration(FIV)is one of the major concerns for multiple cylindrical structures in many engineering applications.The FIV suppression is of great importance for the security of many cylindrical structures.Many active and passive control methods have been employed for the vibration suppression of an isolated cylinder undergoing vortex-induced vibrations(VIV).The FIV suppression methods are mainly extended to the multiple cylinders from the vibration control of the isolated cylinder.Due to the mutual interference between the multiple cylinders,the FIV mechanism is more complex than the VIV mechanism,which makes a great challenge for the FIV suppression.Some efforts have been devoted to vibration suppression of multiple cylinder systems undergoing FIV over the past two decades.The control methods,such as helical strakes,splitter plates,control rods and flexible sheets,are not always effective,depending on many influence factors,such as the spacing ratio,the arrangement geometrical shape,the flow velocity and the parameters of the vibration control devices.The FIV response,hydrodynamic features and wake patterns of the multiple cylinders equipped with vibration control devices are reviewed and summarized.The FIV suppression efficiency of the vibration control methods are analyzed and compared considering different influence factors.Further research on the FIV suppression of multiple cylinders is suggested to provide insight for the development of FIV control methods and promote engineering applications of FIV control methods.
基金Supported by National Key Research and Development Program of China (Grant No.2021YFB3400100)National Natural Science Foundation of China (Grant Nos.52241103,U2241261,52022039)。
文摘Vibration quality is a vital indicator for assessing the progress of modern equipment.The dynamic vibration absorber(DVA)based on the acoustic black hole(ABH)feature is a new passive control method that manipulates waves.It offers efficient energy focalization and broad-spectrum vibration suppression,making it highly promising for applications in large equipment such as aircraft,trains,and ships.Despite previous advancements in ABH-DVA development,certain challenges remain,particularly in ensuring effective coupling with host structures during control.To address these issues,this study proposes a partitioned ABH-featured dynamic vibration absorber(PABH-DVA)with partitions in the radial direction of the disc.By employing a plate as the host structure,simulations and experiments were conducted,demonstrating that the PABH-DVA outperforms the original symmetric ABH-DVA in terms of damping performance.The study also calculated and compared the coupling coefficients of the two ABH-DVAs to uncover the mechanism behind the enhanced damping.Simulation results revealed that the PABH-DVA exhibits more coupled modes,occasionally with lower coupling coefficients than the symmetric ABH-DVA.The influence of frequency ratio and modal mass was further analyzed to explain the reasons behind the PABH-DVA's superior damping performance.Additionally,the study discussed the impact of the number of slits and their orientation.This research further explains the coupling mechanism between the ABH-DVA and the controlled structure,and provides new ideas for the further application of ABH in engineering.
基金supported by the National Natural Science Foundation of ChinaNos.32170950(to LY),31970915(to LY),31871170(to CL)+4 种基金the Natural Science Foundation of Guangdong Province for Major Cultivation ProjectNo.2018B030336001(to LY)the Natural Science Foundation of Guangdong Province,Nos.2021A1515010804(to CL),2023A1515010899(to CL)the Guangdong Grant‘Key Technologies for Treatment of Brain Disorders’No.2018B030332001(to CL)。
文摘Tibetan singing bowls emit low-frequency sounds and produce perceptible harmonic tones and vibrations through manual tapping.The sounds the singing bowls produce have been shown to enhance relaxation and reduce anxiety.However,the underlying mechanism remains unclear.In this study,we used chronic restraint stress or sleep deprivation to establish mouse models of anxiety that exhibit anxiety-like behaviors.We then supplied treatment with singing bowls in a bottomless cage placed on the top of a cushion.We found that unlike in humans,the combination of harmonic tones and vibrations did not improve anxietylike behaviors in mice,while individual vibration components did.Additionally,the vibration of singing bowls increased the level of N-methyl-D-aspartate receptor 1 in the somatosensory cortex and prefrontal cortex of the mice,decreased the level ofγ-aminobutyric acid A(GABA)receptorα1 subtype,reduced the level of CaMKII in the prefrontal cortex,and increased the number of GABAergic interneurons.At the same time,electrophysiological tests showed that the vibration of singing bowls significantly reduced the abnormal low-frequency gamma oscillation peak frequency in the medial prefrontal cortex caused by stress restraint pressure and sleep deprivation.Results from this study indicate that the vibration of singing bowls can alleviate anxiety-like behaviors by reducing abnormal molecular and electrophysiological events in somatosensory and medial prefrontal cortex.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51109158,U2106223)the Science and Technology Development Plan Program of Tianjin Municipal Transportation Commission(Grant No.2022-48)。
文摘When investigating the vortex-induced vibration(VIV)of marine risers,extrapolating the dynamic response on the entire length based on limited sensor measurements is a crucial step in both laboratory experiments and fatigue monitoring of real risers.The problem is conventionally solved using the modal decomposition method,based on the principle that the response can be approximated by a weighted sum of limited vibration modes.However,the method is not valid when the problem is underdetermined,i.e.,the number of unknown mode weights is more than the number of known measurements.This study proposed a sparse modal decomposition method based on the compressed sensing theory and the Compressive Sampling Matching Pursuit(Co Sa MP)algorithm,exploiting the sparsity of VIV in the modal space.In the validation study based on high-order VIV experiment data,the proposed method successfully reconstructed the response using only seven acceleration measurements when the conventional methods failed.A primary advantage of the proposed method is that it offers a completely data-driven approach for the underdetermined VIV reconstruction problem,which is more favorable than existing model-dependent solutions for many practical applications such as riser structural health monitoring.
基金financially supported by the Sichuan Science and Technology Program(Grant No.2023NSFSC1980)。
文摘An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control algorithm can update the control law online through real-time data to make the controller adapt to the environment and improve the control precision.Specifically,based on the adaptive backstepping framework,virtual control laws and Lyapunov functions are designed for each subsystem.Three direction interference observers are designed to track the timevarying boundary disturbance.On this basis,the inverse of the dead zone and linear state transformation are used to compensate for the original system and eliminate the adverse effects of the dead zone.In addition,the stability of the closed-loop system is proven by Lyapunov stability theory.All the system states are bounded,and the vibration offset of the riser converges to a small area of the initial position.Finally,four examples of flexible marine risers are simulated in MATLAB to verify the effectiveness of the proposed controller.
文摘This study is focused on the effect of vibration induced by moving trains in tunnels on the surrounding ground and structures.A three-dimensional finite element model is established for a one-track railway tunnel and an adjacent twelve-storey building frame by using commercial software Midas GTS-NX(2019)and Midas Gen.This study considered the moving load effect of a complete train,which varies with space as well as with time.The effect of factors such as train speed,overburden pressure on the tunnel and variation in soil properties are studied in the time domain.As a result,the variations in horizontal and vertical acceleration for two different sites,i.e.,the free ground surface(without structure)and the area containing the structure,are compared.Also,the displacement pattern of the raft foundation is plotted for different train velocities.At lower speeds,the heaving phenomenon is negligible,but as the speed increases,both the heaving and differential settlement increase in the foundation.This study demonstrates that the effect of moving train vibrations should be considered in the design of new nearby structures and proper ground improvement should be considered for existing structures.
基金Project supported by the National Natural Science Foundation of China(Nos.62188101,12272103,12022213)。
文摘High-static-low-dynamic-stiffness(HSLDS)vibration isolators with buckling beams have been widely used to isolate external vibrations.An active adjustable device composed of proportion integration(PI)active controllers and piezoelectric actuators is proposed for improving the negative stiffness stroke of buckling beams.A nonlinear output frequency response function is used to analyze the effect of the vibration reduction.The prototype of the active HSLDS device is built,and the verification experiment is conducted.The results show that compared with the traditional HSLDS vibration isolator,the active HSLDS device can broaden the isolation frequency bandwidth,and effectively reduce the resonant amplitude by adjusting the active control parameters.The maximum vibration reduction rate of the active HSLDS vibration isolator can attain 89.9%,and the resonant frequency can be reduced from 31.08 Hz to 13.28 Hz.Therefore,this paper devotes to providing a new design scheme for enhanced HSLDS vibration isolators.
基金Project supported by the National Natural Science Foundation of China(No.12372005)。
文摘The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are analyzed.The frequency range of self-excited vibrations is investigated from the energy point of view.The phenomenon of self-excited vibrations is elaborated with the phase trajectory.The corresponding control strategies are briefly analyzed with respect to the vibration mechanism.The results show that when the levitation objects collide with the mechanical interface,the system's vibration frequency becomes larger with the decrease in the collision gap;when the vibration frequency exceeds the critical frequency,the electromagnetic system continues to provide energy to the system,and the collision interface continuously dissipates energy so that the system enters the self-excited vibration state.
基金Supported by National Natural Science Foundation of China(Grant No.52205404)National Key Research and Development Project(Grant No.2018YFA0707300)+2 种基金Fundamental Research Program of Shanxi Province(Grant Nos.202203021212293,202203021221054)Xinjiang Intelligent Equipment Research Institute Directed Commissioned Research Projects(Grant No.XJYJY2024012)Open Research Fund from the Hai’an&Taiyuan University of Technology Advanced Manufacturing and Intelligent Equipment Industrial Research Institute(Grant No.2023HA-TYUTKFYF004).
文摘The research of rolling mill vibration theory has always been a scientific problem in the field of rolling forming,which is very important to the quality of sheet metal and the stable operation of equipment.The essence of rolling mill vibration is the transfer of energy,which is generated from inside and outside.Based on particle damping technology,a dynamic vibration absorber(DVA)is proposed to control the vertical vibration of roll in the rolling process from the point of energy transfer and dissipation.A nonlinear vibration equation for the DVA-roller system is solved by the incremental harmonic balance method.Based on the obtained solutions,the effects of the basic parameters of the DVA on the properties of vibration transmission are investigated by using the power flow method,which provides theoretical guidance for the selection of the basic parameters of the DVA.Furthermore,the influence of the parameters of the particles on the overall dissipation of energy of the particle group is analyzed in a more systematic way,which provides a reference for the selection of the material and diameter and other parameters of the particles in the practical application of the DVA.The effect of particle parameters on roll amplitude inhibition is studied by experiments.The experimental results agree with the theoretical analysis,which proves the correctness of the theoretical analysis and the feasibility of the particle damping absorber.This research proposes a particle damping absorber to absorb and dissipate the energy transfer in rolling process,which provides a new idea for nonlinear dynamic analysis and stability control of rolling mills,and has important guiding significance for practical production.
基金supported by the Tianjin Municipal Transportation Commission Project(No.2018-b2).
文摘The purpose of this study is to investigate the suppression effect of a nonlinear energy sink(NES)on the wind-vortex-induced pipe vibration and explore the influence of damping,stiffness,and NES installation position on the suppression effect.In this work,the wind-vortex-induced vibration of an elastic pipe of a deepwater jacket was studied,and vibrations were suppressed by using an NES.A van der Pol wake oscillator was used to simulate vortex-induced force,and the dynamic equation of the pipe considering the NES was established.The Galerkin method was applied to discretize the motion equation,and the vortex-induced vibration(VIV)of the pipe at reduced wind speeds was numerically analyzed.The novelty of this research is that particle swarm optimization was used to optimize the parameters of the NES to improve vibration suppression.The influence of the installation position,nonlinear stiffness,and damping parameters of the NES on vibration suppression was analyzed.Results showed that the optimized parameter combinations of the NES can effectively reduce wind-vortex-induced pipe vibration.The installation position of the NES had a significant effect on vibration suppression,and the midpoint of the pipe was the optimal NES installation position.An increase in stiffness or a 10% decrease in damping may cause vibration suppression failure.The results of this study provide some guidance for VIV suppression in deepwater jacket pipes.
基金supported by the National Natural Science Foundation of China (62272078)。
文摘With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests from both the industrial and academic communities.Input shaping(IS),as a simple and effective feedforward method,is greatly demanded in DDVC methods.It convolves the desired input command with impulse sequence without requiring parametric dynamics and the closed-loop system structure,thereby suppressing the residual vibration separately.Based on a thorough investigation into the state-of-the-art DDVC methods,this survey has made the following efforts:1)Introducing the IS theory and typical input shapers;2)Categorizing recent progress of DDVC methods;3)Summarizing commonly adopted metrics for DDVC;and 4)Discussing the engineering applications and future trends of DDVC.By doing so,this study provides a systematic and comprehensive overview of existing DDVC methods from designing to optimizing perspectives,aiming at promoting future research regarding this emerging and vital issue.
基金National Natural Science Foundation of China(Grant Nos.51821003,52175524,61704158)the Natural Science Foundation of Shanxi Province(Grant No.202103021224206)Shanxi"1331 Project"Key Subjects Construction to provide fund for conducting experiments。
文摘In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation properties,which is configured by hybrid arc and sharp-angle convergent star-shaped lattices.The effect of the dispersion relation and the bandgap characteristic for the scatterers in star-shaped are simulated and analyzed.The target bandgap width is extended by optimizing the geometry parameters of arc and sharp-angle convergent lattices.The proposed metamaterial configured by optimized hybrid lattices exhibits remarkable broad bandgap characteristics by bandgap complementarity,and the simulation results verify a 99%vibration attenuation amplitude can be obtained in the frequency of20 k Hz—100 k Hz.After the fabrication of the proposed hybrid configurational star-shaped metamaterial by 3D printing technique,the transmission loss experiments are performed,and the experimental results indicate that the fabricated metamaterial has the characteristics of broadband vibration attenuation and an amplitude greater than 85%attenuation for the target frequency.These results demonstrate that the hybrid configurational star-shaped metamaterials can effectively widen the bandgap and realize high efficiency attenuation,which has capability for the vibration attenuation in the application of highprecise equipment.
基金Project supported by the National Natural Science Foundation of China (Nos. U2141244, 11932011,12393781, 12121002, and 12202267)supported by the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(No.SL2021ZD104)+4 种基金the Science and Technology Cooperation Project of Shanghai Jiao Tong University&Inner Mongolia Autonomous Region-Action Plan of Shanghai Jiao Tong University for“Science and Technology Prosperity”(No.2022XYJG0001-01-08)the Industryuniversity-research Cooperation Fund of Shanghai Academy of Spaceflight Technology(No.USCAST2021-11)Shanghai Pujiang Program(No.22PJ1405300)Young Talent Reservoir of CSTAM(No.CSTAM2022-XSC-QN1)the Starting Grant of Shanghai Jiao Tong University(No.WH220402014).
文摘Broadband vibration attenuation is a challenging task in engineering since it is difficult to achieve low-frequency and broadband vibration control simultaneously.To solve this problem,this paper designs a piezoelectric meta-beam with unidirectional electric circuits,exhibiting promising broadband attenuation capabilities.An analytical model in a closed form for achieving the solution of unidirectional vibration transmission of the designed meta-beam is developed based on the state-space transfer function method.The method can analyze the forward and backward vibration transmission of the piezoelectric meta-beam in a unified manner,providing reliable dynamics solutions of the beam.The analytical results indicate that the meta-beam effectively reduces the unidirectional vibration across a broad low-frequency range,which is also verified by the solutions obtained from finite element analyses.The designed meta-beam and the proposed analytical method facilitate a comprehensive investigation into the distinctive unidirectional transmission behavior and superb broadband vibration attenuation performance.
基金the National Natural Science Foundation of China(No.52265043)Science and Technology Plan,Guizhou Province,China(No.ZK2021(267))+2 种基金Technology Achievements Application and Industrialization Project,Guizhou Province,China(No.2021(067))Cultivation Project of Guizhou University,China(No.2019(23))Lastly,we thank the Shanghai Synchrotron Radiation Facility(SSRF)for providing the synchrotron radiation beamtime.
文摘Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV+MV treatments can significantly refine and fragmentize the microstructures.In addition,UV treatment can significantly passivate the primary Mn-rich Al15Mn3Si2 intermetallics.The formation mechanisms of refinement and passivation of the grains and non-dendrite particles were discussed.Compared with the gravity die-cast alloys,the UV and UV+MV treated alloys exhibit improved tensile and creep resistance at room and elevated temperatures.These results can be attributed to the refinement of theα(Al)grains and the secondary intermetallics,the increased proportion of refined heat-resistant precipitates,and the formation of nano-sized Si particles.The ultimate tensile strength of the UV treated alloys at 350℃ exceeds that of commercial piston alloys.This indicates the high application potential of the developed piston alloys in density diesel engines.
基金Project supported by the National Natural Science Foundation of China(Nos.12172248,12021002,12302022,and 12132010)the Tianjin Research Program of Application Foundation and Advanced Technology of China(No.22JCQNJC00780)IoT Standards and Application Key Laboratory of the Ministry of Industry and Information Technology of China(No.202306)。
文摘As critical components of aircraft skins and rocket fuel storage tank shells,large thin-walled workpieces are susceptible to vibration and deformation during machining due to their weak local stiffness.To address these challenges,we propose a novel tunable electromagnetic semi-active dynamic vibration absorber(ESADVA),which integrates with a magnetic suction follower to form a followed ESADVA(follow-ESADVA)for mirror milling.This system combines a tunable magnet oscillator with a follower,enabling real-time vibration absorption and condition feedback throughout the milling process.Additionally,the device supports self-sensing and frequency adjustment by providing feedback to a linear actuator,which alters the distance between magnets.This resolves the traditional issue of being unable to directly monitor vibration at the machining point due to space constraints and tool interference.The frequency shift characteristics and vibration absorption performance are comprehensively investigated.Theoretical and experimental results demonstrate that the prototyped follow-ESADVA achieves frequency synchronization with the milling tool,resulting in a vibration suppression rate of approximately 47.57%.Moreover,the roughness of the machined surface decreases by18.95%,significantly enhancing the surface quality.The results of this work pave the way for higher-quality machined surfaces and a more stable mirror milling process.
基金supported by the National Natural Science Foundation of China(51777053,52077052)。
文摘A vibration energy harvester can harvest vibration energy in the environment and convert it into electrical energy to power the sensors in the Internet of Things.Human walking contains high-quality vibration energy,which serves as the energy source for vibration energy harvesters due to its abundant availability,high energy conversion efficiency,and environmental friendliness.It is difficult to harvest human walking vibration due to its low frequency.Converting the low-frequency vibration of human walking into high-frequency vibration has attracted attention.In previous studies,vibration energy harvesters typically increase frequency by raising excitation frequency or inducing free vibration.When walking frequency changes,the up-frequency method of raising the excitation frequency changes the voltage frequency,resulting in the best load resistance change and reducing the output power.The up-frequency method of inducing free vibration does not increase the external excitation frequency,which has relatively low output power.This paper designs a magnetostrictive vibration energy harvester with a rotating up-frequency structure.It consists of a rotating up-frequency structure,a magnetostrictive structure,coils,and bias magnets.The main body of the rotating up-frequency structure comprises a torsion bar and a flywheel with a dumbbell-shaped hole.The magnetostrictive structure includes four magnetostrictive metal sheets spliced by Galfenol and steel sheets.The torsion bar and flywheel interact to convert low-frequency linear vibration into rotating high-frequency excitation vibration of the flywheel.The flywheel plucks the magnetostrictive metal sheet with a high excitation frequency to generate free vibration.The vibration energy harvester increases the excitation frequency while inducing free vibration,which can effectively improve the output power.To characterize the excitation vibration and free vibration,based on the theory of Euler-Bernoulli beam theory,the vibration equation of the magnetostrictive metal sheet after being excited is given.According to the classical machine-magnetic coupling model and the Jiles-Atherton physical model,the relationship between stress and magnetization strength is derived.Combined with Faraday's law of electromagnetic induction,the distributed dynamic output voltage model is established.This model can predict the output voltage at different excitation frequencies.Based on this model,the mechanical-magnetic structural parameter optimization design is carried out.The parameters of the magnetostrictive metal sheet,the bias magnet,and the rotating up-frequency structure are determined.A comprehensive experimental system is established to test the device.The peak-to-peak voltage and output voltage signal by the proposed model are compared.The average relative deviation of the peak-to-peak voltage and the output voltage signal is 4.9%and 8.2%,respectively.The experimental results show that the output power is proportional to the excitation frequency.The optimum load resistance is always 800Ωas the excitation frequency changes,simplifying the impedance-matching process.The maximum peak-to-peak voltage of the device is 58.60 V,the maximum root mean square(RMS)voltage is 9.53 V,and the maximum RMS power is 56.20 mW.The magnetostrictive vibration energy harvester with a rotating up-frequency structure solves the problem of impedance matching,which improves the output power.The proposed distributed dynamic output voltage model can effectively predict the output characteristics.This study can provide structural and theoretical guidance for up-frequency structure vibration energy harvesters for human walking vibration.