期刊文献+
共找到107篇文章
< 1 2 6 >
每页显示 20 50 100
A low-frequency and broadband wave-insulating vibration isolator based on plate-shaped metastructures
1
作者 Wei WEI Feng GUAN Xin FANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第7期1171-1188,共18页
A metamaterial vibration isolator,termed as wave-insulating isolator,is proposed,which preserves enough load-bearing capability and offers ultra-low and broad bandgaps for greatly enhanced wave insulation.It consists ... A metamaterial vibration isolator,termed as wave-insulating isolator,is proposed,which preserves enough load-bearing capability and offers ultra-low and broad bandgaps for greatly enhanced wave insulation.It consists of plate-shaped metacells,whose symmetric and antisymmetric local resonant modes offer several low and broad mode bandgaps although the complete bandgap remains high and narrow.The bandgap mechanisms,vibration isolation properties,effects of key parameters,and robustness to complex conditions are clarified.As experimentally demonstrated,the wave-insulating isolator can improve the vibration insulation in the ranges of[50 Hz,180 Hz]and[260 Hz,400 Hz]by 15 dB and 25 dB,respectively,in contrast to the conventional isolator with the same first resonant frequency. 展开更多
关键词 metamaterial and metastructure vibration isolation bandgap wave insulation PLATE
下载PDF
Multi-layer quasi-zero-stiffness meta-structure for high-efficiency vibration isolation at low frequency
2
作者 Jiahao ZHOU Jiaxi ZHOU +3 位作者 Hongbin PAN Kai WANG Changqi CAI Guilin WEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第7期1189-1208,共20页
An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is us... An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is used to design the unit cel,i.e.,the single-layer QZS(SL-QZS)meta-structure.Second,the stiffness feature of the unit cell is investigated and verified through static experiments.Third,the unit cells are stacked one by one along the direction of vibration isolation,and thus the ML-QZS meta-structure is constructed.Fourth,the dynamic modeling of the ML-QZS vibration isolation metastructure is conducted,and the dynamic responses are obtained from the equations of motion,and verified by finite element(FE)simulations.Finally,a prototype of the ML-QZS vibration isolation meta-structure is fabricated by additive manufacturing,and the vibration isolation performance is evaluated experimentally.The results show that the vibration isolation performance substantially enhances when the number of unit cells increases.More importantly,the ML-QZS meta-structure can be easily extended in the direction of vibration isolation when the unit cells are properly stacked.Hence,the ML-FQZS vibration isolation meta-structure should be a fascinating solution for highly efficient vibration isolation performance at low frequency. 展开更多
关键词 quasi-zero stiffness(QZS) meta-structure high efficiency low frequency vibration isolation
下载PDF
Theoretical and experimental investigations on an X-shaped vibration isolator with active controlled variable stiffness
3
作者 Zeyu CHAI J.T.HAN +3 位作者 Xuyuan SONG Jian ZANG Yewei ZHANG Zhen ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第8期1371-1386,共16页
A novel X-shaped variable stiffness vibration isolator(X-VSVI)is proposed.The Runge-Kutta method,harmonic balance method,and wavelet transform spectra are introduced to evaluate the performance of the X-VSVI under var... A novel X-shaped variable stiffness vibration isolator(X-VSVI)is proposed.The Runge-Kutta method,harmonic balance method,and wavelet transform spectra are introduced to evaluate the performance of the X-VSVI under various excitations.The layer number,the installation angle of the X-shaped structure,the stiffness,and the active control parameters are systematically analyzed.In addition,a prototype of the X-VSVI is manufactured,and vibration tests are carried out.The results show that the proposed X-VSVI has a superior adaptability to that of a traditional X-shaped mechanism,and shows excellent vibration isolation performance in response to different amplitudes and forms of excitations.Moreover,the vibration isolation efficiency of the device can be improved by appropriate adjustment of parameters. 展开更多
关键词 bionic vibration isolation X-shaped structure variable stiffness structure nonlinear dynamics prototype experiment
下载PDF
Application and optimization design of non-obstructive particle damping-phononic crystal vibration isolator in viaduct structure-borne noise reduction
4
作者 SHI Duo-jia ZHAO Cai-you +3 位作者 ZHANG Xin-hao ZHENG Jun-yuan WEI Na-chao WANG Ping 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2513-2531,共19页
The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructi... The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructive particle damping-phononic crystal vibration isolator is proposed herein,which uses the particle damping vibration absorption technology and bandgap vibration control theory.The vibration reduction performance of the NOPD-PCVI was analyzed from the perspective of vibration control.The paper explores the structure-borne noise reduction performance of the NOPD-PCVIs installed on different bridge structures under varying service conditions encountered in practical engineering applications.The load transferred to the bridge is obtained from a coupled train-FST-bridge analytical model considering the different structural parameters of bridges.The vibration responses are obtained using the finite element method,while the structural noise radiation is simulated using the frequency-domain boundary element method.Using the particle swarm optimization algorithm,the parameters of the NOPD-PCVI are optimized so that its frequency bandgap matches the dominant bridge structural noise frequency range.The noise reduction performance of the NOPD-PCVIs is compared to the steel-spring isolation under different service conditions. 展开更多
关键词 non-obstructive particle damping phononic crystal vibration isolator band gap optimization floating-slab track bridge structure-borne noise control particle swarm optimization
下载PDF
Dynamic analysis of a novel multilink-spring mechanism for vibration isolation and energy harvesting
5
作者 谢佳衡 杨涛 唐介 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期366-379,共14页
Due to technical limitations,existing vibration isolation and energy harvesting(VIEH)devices have poor performance at low frequency.This paper proposes a new multilink-spring mechanism(MLSM)that can be used to solve t... Due to technical limitations,existing vibration isolation and energy harvesting(VIEH)devices have poor performance at low frequency.This paper proposes a new multilink-spring mechanism(MLSM)that can be used to solve this problem.The VIEH performance of the MLSM under harmonic excitation and Gaussian white noise was analyzed.It was found that the MLSM has good vibration isolation performance for low-frequency isolation and the frequency band can be widened by adjusting parameters to achieve a higher energy harvesting power.By comparison with two special cases,the results show that the MLSM is basically the same as the other two oscillators in terms of vibration isolation but has better energy harvesting performance under multistable characteristics.The MLSM is expected to reduce the impact of vibration on high-precision sensitive equipment in some special sites such as subways and mines,and at the same time supply power to structural health monitoring devices. 展开更多
关键词 multilink-spring mechanism nonlinear dynamics vibration isolation energy harvester
下载PDF
A viscoelastic metamaterial beam for integrated vibration isolation and energy harvesting
6
作者 Long ZHAO Zeqi LU +1 位作者 Hu DING Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第7期1243-1260,共18页
Locally resonant metamaterials have low-frequency band gaps and the capability of converging vibratory energy in the band gaps at resonant cells.It has been demonstrated by several researchers that the dissipatioin of... Locally resonant metamaterials have low-frequency band gaps and the capability of converging vibratory energy in the band gaps at resonant cells.It has been demonstrated by several researchers that the dissipatioin of vibratory energy within the band gap can be improved by using viscoelastic materials.This paper designs an integrated viscoelastic metamaterial for energy harvesting and vibration isolation.The viscoelastic metamaterial is achieved by a viscoelastic beam periodically arrayed with spatial ball-pendulum nonlinear energy harvesters.The nonlinear resonator with an energy harvesting function is achieved by placing a free-rolling magnetic ball in a spherical cavity with an additional induction coil.The dynamic equations of viscoelastic metamaterials under transverse excitation are established,and the energy harvesting and vibration isolation characteristics within the dispersion relation of viscoelastic metamaterials are analyzed.The results show that the vibrations of the main body of the viscoelastic metamaterial beam are significantly suppressed in the frequency range of the local resonance band gap.At the same time,the elastic waves are limited in the nonlinear resonator with an energy harvesting function,which improves the energy output.Finally,an experimental platform of viscoelastic metamaterial vibration is established for validation purposes. 展开更多
关键词 viscoelastic metamaterial nonlinear vibration vibration isolation energy harvesting
下载PDF
A vibration isolator with a controllable quasi-zero stiffness region based on nonlinear force design
7
作者 Xinyu LIAN Bing LIU +1 位作者 Huaxia DENG Xinglong GONG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第8期1279-1294,共16页
To achieve stability optimization in low-frequency vibration control for precision instruments,this paper presents a quasi-zero stiffness(QZS)vibration isolator with adjustable nonlinear stiffness.Additionally,the str... To achieve stability optimization in low-frequency vibration control for precision instruments,this paper presents a quasi-zero stiffness(QZS)vibration isolator with adjustable nonlinear stiffness.Additionally,the stress-magnetism coupling model is established through meticulous theoretical derivation.The controllable QZS interval is constructed via parameter design and magnetic control,effectively segregating the high static stiffness bearing section from the QZS vibration isolation section.Furthermore,a displacement control scheme utilizing a magnetic force is proposed to regulate entry into the QZS working range for the vibration isolation platform.Experimental results demonstrate that the operation within this QZS region reduces the peak-to-peak acceleration signal by approximately 66.7%compared with the operation outside this region,thereby significantly improving the low frequency performance of the QZS vibration isolator. 展开更多
关键词 low frequency NONLINEAR vibration isolator quasi-zero stiffness(QzS)
下载PDF
A human-sensitive frequency band vibration isolator for heavy-duty truck seats
8
作者 Qingqing LIU Shenlong WANG +5 位作者 Ge YAN Hu DING Haihua WANG Qiang SHI Xiaohong DING Huijie YU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第10期1733-1748,共16页
In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven... In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven roads.First,the analytical expressions for the force and displacement of the HFBVI are derived with the Lagrange equation and d'Alembert's principle,and are validated through the prototype restoring force testing.Second,the harmonic balance method(HBM)is used to obtain the dynamic responses under harmonic excitation,and further the influence of pre-stretching on the dynamic characteristics and transmissibility is discussed.Finally,the experimental prototype of the HFBVI is fabricated,and vibration experiments are conducted under harmonic excitation to verify the vibration isolation performance(VIP)of the proposed vibration isolator.The experimental results indicate that the HFBVI can effectively suppress the frequency band(4-8 Hz)to which the human body is sensitive to vertical vibration.In addition,under real random road spectrum excitation,the HFBVI can achieve low-frequency vibration isolation close to 2 Hz,providing new prospects for ensuring the health of heavy-duty truck drivers. 展开更多
关键词 human-sensitive frequency band quasi-zero stiffness(QZS) heavy-duty truck seat real random road spectrum low-frequency vibration isolation
下载PDF
Multi Objective Robust Active Vibration Control for Flexure Jointed Struts of Stewart Platforms via H∞ and μ Synthesis 被引量:6
9
作者 刘磊 王本利 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第2期125-133,共9页
Active vibration control is needed for future space telescopes, space laser communication and other precision sensitive payloads which require ultra-quiet environments. A Stewart platform based hybrid isolator with 6 ... Active vibration control is needed for future space telescopes, space laser communication and other precision sensitive payloads which require ultra-quiet environments. A Stewart platform based hybrid isolator with 6 hybrid struts is the effective system for active/passive vibration isolation over 5-250 Hz band. Using an identification transfer matrix of the Stewart platform, the coupling analysis of six channels is provided. A dynamics model is derived, and the rigid mode is removed to keep the signal of pointing control. Multi objective robust H∞ and μ synthesis strategies, based on singular values and structured singular values respectively, are presented, which simultaneously satisfy the low frequency pointing and high frequency disturbance rejection requirements and take account of the model uncertainty, parametric uncertainty and sensor noise. Then, by performing robust stability test, it is shown that the two controllers are robust to the uncertainties, the robust stability margin of H, controller is less than that of μ controller, but the order of μ controller is higher than that of H, controller, so the balanced controller reduction is provided. Additionally, the μ controller is compared with a PI controller. The time domain simulation of the μ controller indicates that the two robust control strategies are effective for keeping the pointing command and isolating the harmonic and stochastic disturbances. 展开更多
关键词 vibration isolation active struts Stewart platform H∞ synthesis μ synthesis rigid mode model reduction
下载PDF
Mechanical properties of disc-spring vibration isolators based on boundary friction 被引量:2
10
作者 贾方 张凡成 《Journal of Southeast University(English Edition)》 EI CAS 2014年第1期39-44,共6页
To ascertain the influence of the boundary friction on mechanical properties of disc-spring vibration isolators a load-displacement hysteresis curve formula of disc-spring vibration isolators is derived on the basis o... To ascertain the influence of the boundary friction on mechanical properties of disc-spring vibration isolators a load-displacement hysteresis curve formula of disc-spring vibration isolators is derived on the basis of the energy conservation law as well as considering the effect of the boundary friction.The formula is validated through the finite element analysis and static load tests.On this basis the effect of the boundary friction on the bearing capacity is researched. Then the dynamic performance of disc-spring vibration isolators is studied by dynamic tests.The experimental results indicate that the boundary friction can promise a larger damping with a ratio of 0.23 for disc-spring vibration isolators.Compared with the loading frequency the loading amplitude has a greater impact on the energy consumption dynamic stiffness and damping of vibration isolators.This research can provide valuable information for the design of disc-spring vibration isolators. 展开更多
关键词 disc-spring vibration isolator boundary friction hysteresis curve dynamic stiffness DAMPING finite element analysis FEA
下载PDF
Analysis and design of open trench barriers in screening steady-state surface vibrations 被引量:11
11
作者 Ankurjyoti Saikia Utpal Kumar Das 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第3期545-554,共10页
The problem of vibration isolation by rectangular open trenches in a plane strain context is numerically studied using a finite element code, PLAXIS. The soil media is assumed to be linear elastic, isotropic, and homo... The problem of vibration isolation by rectangular open trenches in a plane strain context is numerically studied using a finite element code, PLAXIS. The soil media is assumed to be linear elastic, isotropic, and homogeneous subjected to a vertical harmonic load producing steady-state vibration. The present model is validated by comparing it with previously published works. The key geometrical features of a trench, i.e., its depth, width, and distance from the source of excitation, are normalized with respect to the Rayleigh wavelength. The attenuation of vertical and horizontal components of vibration is studied for various trench dimensions against trench locations varied from an active to a passive case. Results are depicted in non-dimensional forms and conclusions are drawn regarding the effects of geometrical parameters in attenuating vertical and horizontal vibration components. The screening efficiency is primarily governed by the normalized depth of the barrier. The effect of width has little significance except in some specific cases. Simplified regression models are developed to estimate average amplitude reduction factors. The models applicable to vertical vibration cases are found to be in excellent agreement with previously published results. 展开更多
关键词 finite element open trench vibration isolation wave barrier non-dimensional
下载PDF
A hybrid multi-degree-of-freedom vibration isolation platform for spacecrafts by the linear active disturbance rejection control 被引量:6
12
作者 Weichao CHI S.J.MA J.Q.SUN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第5期805-818,共14页
The hybrid vibration isolation, which takes advantages of both the passive and active approaches, has been an important solution for space missions. The objective of this paper is to design a vibration isolation platf... The hybrid vibration isolation, which takes advantages of both the passive and active approaches, has been an important solution for space missions. The objective of this paper is to design a vibration isolation platform for payloads on spacecrafts with the robust, wide bandwidth, and multi-degree-of-freedom(MDOF). The proposed solution is based on a parallel mechanism with six voice-coil motors(VCMs) as the actuators. The linear active disturbance resistance control(LADRC) algorithm is used for the active control. Numerical simulation results show that the vibration isolation platform performs effectively over a wide bandwidth, and the resonance introduced by the passive isolation is eliminated. The system robustness to the uncertainties of the structure is also verified by simulation. 展开更多
关键词 hybrid vibration isolation Stewart platform linear active disturbance rejection control(LADRC) STABILITY ROBUSTNESS
下载PDF
A state-of-the-art review on low-frequency nonlinear vibration isolation with electromagnetic mechanisms 被引量:5
13
作者 Bo YAN Ning YU Chuanyu WU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第7期1045-1062,共18页
Vibration isolation is one of the most efficient approaches to protecting host structures from harmful vibrations,especially in aerospace,mechanical,and architectural engineering,etc.Traditional linear vibration isola... Vibration isolation is one of the most efficient approaches to protecting host structures from harmful vibrations,especially in aerospace,mechanical,and architectural engineering,etc.Traditional linear vibration isolation is hard to meet the requirements of the loading capacity and isolation band simultaneously,which limits further engineering application,especially in the low-frequency range.In recent twenty years,the nonlinear vibration isolation technology has been widely investigated to broaden the vibration isolation band by exploiting beneficial nonlinearities.One of the most widely studied objects is the"three-spring"configured quasi-zero-stiffness(QZS)vibration isolator,which can realize the negative stiffness and high-static-low-dynamic stiffness(HSLDS)characteristics.The nonlinear vibration isolation with QZS can overcome the drawbacks of the linear one to achieve a better broadband vibration isolation performance.Due to the characteristics of fast response,strong stroke,nonlinearities,easy control,and low-cost,the nonlinear vibration with electromagnetic mechanisms has attracted attention.In this review,we focus on the basic theory,design methodology,nonlinear damping mechanism,and active control of electromagnetic QZS vibration isolators.Furthermore,we provide perspectives for further studies with electromagnetic devices to realize high-efficiency vibration isolation. 展开更多
关键词 quasi-zero-stiffness(QZS) nonlinear vibration isolation LOW-FREQUENCY electromagnetic vibration isolation BISTABLE
下载PDF
Active Low-frequency Vertical Vibration Isolation System for Precision Measurements 被引量:5
14
作者 WU Kang LI Gang +1 位作者 HU Hua WANG Lijun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第1期164-169,共6页
Low-fi'equency vertical vibration isolation systems play important roles in precision measurements to reduce seismic and environmental vibration noise. Several types of active vibration isolation systems have been de... Low-fi'equency vertical vibration isolation systems play important roles in precision measurements to reduce seismic and environmental vibration noise. Several types of active vibration isolation systems have been developed. However, few researches focus on how to optimize the test mass install position in order to improve the vibration transmissibility. An active low-frequency vertical vibration isolation system based on an earlier instrument, the Super Spring, is designed and implemented. The system, which is simple and compact, consists of two stages: a parallelogram-shaped linkage to ensure vertical motion, and a simple spring-mass system. The theoretical analysis of the vibration isolation system is presented, including terms erroneously ignored before. By carefully choosing the mechanical parameters according to the above analysis and using feedback control, the resonance frequency of the system is reduced from 2.3 to 0.03 Hz, a reduction by a factor of more than 75. The vibration isolation system is installed as an inertial reference in an absolute gravimeter, where it improved the scatter of the absolute gravity values by a factor of 5. The experimental results verifies the improved performance of the isolation system, making it particularly suitable for precision experiments. The improved vertical vibration isolation system can be used as a prototype for designing high-performance active vertical isolation systems. An improved theoretical model of this active vibration isolation system with beam-pivot configuration is proposed, providing fundamental guidelines for vibration isolator design and assembling. 展开更多
关键词 vibration isolation VERTICAL low frequency ACTIVE
下载PDF
Self-synchronization theory of dual motor driven vibration system with two-stage vibration isolation frame 被引量:4
15
作者 He LI Dan LIU +2 位作者 Lai JIANG Chunyu ZHAO Bangchun WEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第2期265-278,共14页
This paper studies self-synchronization and stability of a dual-motor driven vibration system with a two-stage vibration isolation frame. Oscillation amplitude of the material box large enough can be ensured on the vi... This paper studies self-synchronization and stability of a dual-motor driven vibration system with a two-stage vibration isolation frame. Oscillation amplitude of the material box large enough can be ensured on the vibration system in order to screen materials. Reduction of the dynamic load transmitted to the foundation can also be achieved for the vibration system. A Lagrange equation is used to set up the motion differential equations of the system, and a dimensionless coupled equation of the eccentric rotors is obtained using a method of modified average small parameter. According to the existence condition of zero solution in the dimensionless coupled equation of the eccentric rotors, the precondition for commencing self-synchronization motion is achieved.The stability condition of self-synchronization is obtained based on the Routh-Hurwitz criterion. The theoretical analysis is validated by simulations and experiments. 展开更多
关键词 SELF-SYNCHRONIZATION vibration system STABILITY vibration isolation
下载PDF
Active Vibration Isolation of Micro-Manufacturing Platform Based on Neural Network 被引量:4
16
作者 ZHANG Chun-liang, MEI De-qing, CHEN Zi-chen (Institute of Production Engineering, Zhejiang University, Hangzhou 310027, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期67-68,共2页
The micromation and precision of the Micro-Electromechanical System demand that its manufacturing, measuring and assembling must work in a micro-manufacturing platform with good ability to isolate vibrations. This pap... The micromation and precision of the Micro-Electromechanical System demand that its manufacturing, measuring and assembling must work in a micro-manufacturing platform with good ability to isolate vibrations. This paper develops a vibration isolation system of micro-manufacturing platform. The brains of many kinds of birds can isolate vibrations well, such as woodpecker’s brain. When a woodpecker pecks the wood at the speed as 1.6 times as the velocity of sound, its brain will tolerate the wallop 1 500 times of the weight of itself without any damage. The isolation mechanics and organic texture of woodpecker’s brain that has good isolation characteristics were studied. A structure model of vibration isolation system for the micro-manufacturing platform is established based on the bionics of the bird’s brain vibration isolation mechanism. In order to isolate effectively the high frequency vibrations from the ground, a rubber layer is used to isolate vibrations passively between the micro-manufacturing platform’s pedestal and the ground. This layer corresponds to the cartilage and muscles in the outer meninges of the bird’s brain. The active vibration isolation technique is adopted to isolate vibrations between the micro-manufacturing platform and the pedestal. Air springs are used as elastic components, which correspond to the interspaces between the outer meninges and the encephala of the bird’s brain. Actuators are made of giant magnetostrictive material, and it corresponds to the nerves and neural muscles linking the meninges and the encephala. The actuators and air springs are arranged vertically in parallel to make use of the giant magnetostrictive actuators effectively. The air springs support almost all weight of the micro-manufacturing platform and the giant magnetostrictive actuators support almost no weight. In order to realize high performance to isolate complex micro-vibration, the control method using a three-layer neural network is presented. This vibration control system takes into account the floor disturbance and the direct disturbance acting on the micro-manufacturing platform. The absolute acceleration of the micro-manufacturing platform is used as the performance index of vibration control. The performance of the control system is tested by numerical simulation. Simulation results show that the active vibration isolation system has good isolation performance against the floor disturbance and the direct disturbance acting on the micro-manufacturing platform in all the frequency range. 展开更多
关键词 micro-manufacturing platform active vibration isolation bionic mechanics neural network
下载PDF
Cascaded quasi-zero stiffness nonlinear low-frequency vibration isolator inspired by human spine 被引量:4
17
作者 Guoxin JIN Zhenghao WANG Tianzhi YANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第6期813-824,共12页
Human motion induced vibration has very low frequency,ranging from 2 Hz to 5 Hz.Traditional vibration isolators are not effective in low-frequency regions due to the trade-off between the low natural frequency and the... Human motion induced vibration has very low frequency,ranging from 2 Hz to 5 Hz.Traditional vibration isolators are not effective in low-frequency regions due to the trade-off between the low natural frequency and the high load capacity.In this paper,inspired by the human spine,we propose a novel bionic human spine inspired quasi-zero stiffness(QZS)vibration isolator which consists of a cascaded multi-stage negative stiffness structure.The force and stiffness characteristics are investigated first,the dynamic model is established by Newton’s second law,and the isolation performance is analyzed by the harmonic balance method(HBM).Numerical results show that the bionic isolator can obtain better low-frequency isolation performance by increasing the number of negative structure stages,and reducing the damping values and external force values can obtain better low-frequency isolation performance.In comparison with the linear structure and existing traditional QZS isolator,the bionic spine isolator has better vibration isolation performance in low-frequency regions.It paves the way for the design of bionic ultra-low-frequency isolators and shows potential in many engineering applications. 展开更多
关键词 bionic spine inspired vibration isolator harmonic balance method(HBM) quasi-zero stiffness(QZS) ultra-low frequency vibration isolation
下载PDF
Research and application on three-dimensional seismic and vibration isolation for building 被引量:5
18
作者 魏陆顺 周福霖 +1 位作者 谭平 任珉 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第1期62-66,共5页
This paper presents the study of a three-dimensional(3D) isolation system.Firstly,the authors investigated the effects of an innovative 3D isolator,which was composed of a connecting plate,a rubber pad for vibration i... This paper presents the study of a three-dimensional(3D) isolation system.Firstly,the authors investigated the effects of an innovative 3D isolator,which was composed of a connecting plate,a rubber pad for vibration isolation in the vertical direction and a horizontal rubber bearing for seismic isolation in both horizontal directions.Secondly,the authors designed such a vibration isolation system and installed it underneath two specific residential buildings which were built directly over an existing subway communication hub platform in Beijing.These buildings required good performance vibration and seismic isolation system to reduce the impact from the running of nearby subway trains.Finally,in situ tests were conducted for both the isolated and the non-isolated buildings for the purpose of comparison.The test results showed that the maximum acceleration response level of the isolated superstructure is reduced by 10% as compared to that of the platform.The maximum attenuation of vibration reaches up to 25 dB.The 3D system explored in this paper is very effective in control and suppression of building vibration induced by earthquakes or running of trains. 展开更多
关键词 three-dimensional seismic and vibration isolator vertical vibration isolation horizontal seismic isolation engineering application
下载PDF
Dynamic Analysis and Decoupling Control of Octo-pneumatic Actuator Vibration Isolation Platform 被引量:3
19
作者 WANG Xiaolei YANG QinNun ZHENG Gangtie 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第1期116-123,共8页
Control of a six-DOF vibration isolation platform is generally difficult which is due to the strong coupling among its input and output channels. The dynamic behavior and decoupling approach of a six-DOF vibration iso... Control of a six-DOF vibration isolation platform is generally difficult which is due to the strong coupling among its input and output channels. The dynamic behavior and decoupling approach of a six-DOF vibration isolation platform with eight pneumatic actuators are investigated. Owing to the symmetric configuration design of the platform, the coupling among different channels is greatly weakened. When the payload's principal axes of inertia parallel to the platform's axes of symmetry and the payload's center of mass is at the extension line of the platform's central axis, the motion can be decomposed into two independent single-input single-output channels and two independent two-input two-output subsystems. The second-order subsystems are decoupled further with the simultaneous matrix diagonalization. Thus a decoupling control strategy is developed. Effectiveness of the decoupling approach is verified through experiments of the platform, and the experimental results show that vibrations of the platform are attenuated obviously owing to the active control. 展开更多
关键词 decoupling control vibration isolation eight actuators pneumatic actuator
下载PDF
Railway ground vibration and mitigation measures: benchmarking of best practices 被引量:4
20
作者 Slimane Ouakka Olivier Verlinden Georges Kouroussis 《Railway Engineering Science》 2022年第1期1-22,共22页
Vibration and noise aspects play a relevant role in the lifetime and comfort of urban areas and their resi-dents.Among the different sources,the one coming from the rail transit system will play a central concern in t... Vibration and noise aspects play a relevant role in the lifetime and comfort of urban areas and their resi-dents.Among the different sources,the one coming from the rail transit system will play a central concern in the following years due to its sustainability.Ground-borne vibration and noise assessment as well as techniques to mitigate them become key elements of the environmental impact and the global enlargement planned for the railway industry.This paper aims to describe and compare the different mitigation systems existing and reported in liter-ature through a comprehensive state of the art analysis providing the performance of each measure.First,an introduction to the ground-borne vibration and noise gen-erated from the wheel-rail contact and its propagation through the transmission path is presented.Then,the impact and the different ways of evaluating and assessing these effects are presented,and the insertion loss indicator is introduced.Next,the different mitigation measures at different levels(vehicle,track,transmission path and receiver)are discussed by describing their possible appli-cation and their efficiency in terms of insertion loss.Finally,a summary with inputs of how it is possible to address the future of mitigation systems is reported. 展开更多
关键词 Ground-borne noise and vibration Railway dynamics Urban railway vibration mitigation Insertion loss vibration isolation
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部