According to the theory of phononic crystals, the hydraulic pipeline is designed to be a periodic structure composed of steel pipes and hoses to suppress the vibration of the hydraulic system with band gaps. We presen...According to the theory of phononic crystals, the hydraulic pipeline is designed to be a periodic structure composed of steel pipes and hoses to suppress the vibration of the hydraulic system with band gaps. We present theoretical and experimental investigations into the flexural vibration transfer properties of a high-pressure periodic pipe with the force on the inner pipe wall by oii pressure taken into consideration. The results show that the vibration attenuation of periodic pipe decreases along with the elevation of working pressure for the hydraulic system, and the band gaps in low frequency ranges move towards high frequency ranges. The periodic pipe has good vibration attenuation performance in the frequency range below 1000 Hz and the vibration of the hydraulic system is effectively suppressed. A11 the results are validated by experiment. The experimental results show a good agreement with the numerical calculations, thus the flexural vibration transfer properties of the high- pressure periodic pipe can be precisely calculated by taking the fluid structure interaction between the pipe and oil into consideration. This study provides an effective way for the vibration control of the hydraulic system.展开更多
The problem of radial symmetric motion for a solid sphere composed of a class of generalized incompressible neo-Hookean materials, subjected to a suddenly applied surface tensile dead load, is examined.The ana...The problem of radial symmetric motion for a solid sphere composed of a class of generalized incompressible neo-Hookean materials, subjected to a suddenly applied surface tensile dead load, is examined.The analytic solutions for this problem and the motion equation of cavity that describes cavity formation and growth with time are obtained. The e?ect of radial perturbation of the materials on cavity formation and its motion is discussed. The plane of the perturbation parameters of the materials is divided into four regions. The existential conditions and qualitative properties of solutions of the motion equation of the cavity are studied in di?erent parameters’ regions in detail. It is proved that the cavity motion with time is a nonlinear periodic vibration. The vibration center is then determined.展开更多
Dynamical formation and growth of compressible thermal-hyperelastic Gent-Thomas cavity in a sphere composed of two inmaterials were discussed under the case of a non-uniform temperature field and the surface dead load...Dynamical formation and growth of compressible thermal-hyperelastic Gent-Thomas cavity in a sphere composed of two inmaterials were discussed under the case of a non-uniform temperature field and the surface dead loading. The mathematical model was first presented based on the dynamical theory of finite deformations. An exact differential relation between the void radius and surface load was obtained by using the variable transformation method. By numerical computation, critical loads and cavitation growth curves were obtained for different temperatures. The influence of the temperature and material parameters of the composed sphere on the void formation and growth was considered and compared with those for static analysis. The results show that the cavity occurs stiddenly with a finite radius and its evolvement with time displays a non-linear periodic vibration and that the critical load decreases with the increase of temperature and also the dynamical critical load is lower than the static critical load under the same conditions.展开更多
The authors performed single mobile microtremor measurements at 218 sites at KMA (Kingston Metropolitan Area) with the objective of estimating the amplification effects due to the earthquake ground motion on the sur...The authors performed single mobile microtremor measurements at 218 sites at KMA (Kingston Metropolitan Area) with the objective of estimating the amplification effects due to the earthquake ground motion on the surface geology. The Fourier transform was applied to the most stationary parts of the triaxial wave motion recordings for each individual site and applied the traditional Nakamura technique, namely, the horizontal to vertical spectral ratio (H/V) to retrieve the predominant shear wave period of vibration of the soil profiles above the bedrock. The results yield predominant long periods of about 3.0-4.0 s in the port area and the waterfront, 1.0-2.0 s in the central part of Kingston, 0.3-1.0 s in Portmore and very stiff soil conditions in the surrounding area of the city. The results coincide fairly well with previous geological studies in the region, geotechnical data in boreholes, gravimetric measurements and strong motion recordings, suggesting a high degree of amplification of ground motion in the whole period range of engineering interest. Additionally, the authors obtained the liquefaction vulnerability factor Kg proposed by Nakamura based on the H/V ratio of microtremors. The results suggest that the port area, the waterfront and the Port Royal are highly susceptible to liquefaction. Finally, the authors obtained fundamental periods of vibration based on microtremor measurements on the roof and the basement of four important buildings in the KMA and indicated future lines of research employing ambient noise measurements on structures.展开更多
文摘According to the theory of phononic crystals, the hydraulic pipeline is designed to be a periodic structure composed of steel pipes and hoses to suppress the vibration of the hydraulic system with band gaps. We present theoretical and experimental investigations into the flexural vibration transfer properties of a high-pressure periodic pipe with the force on the inner pipe wall by oii pressure taken into consideration. The results show that the vibration attenuation of periodic pipe decreases along with the elevation of working pressure for the hydraulic system, and the band gaps in low frequency ranges move towards high frequency ranges. The periodic pipe has good vibration attenuation performance in the frequency range below 1000 Hz and the vibration of the hydraulic system is effectively suppressed. A11 the results are validated by experiment. The experimental results show a good agreement with the numerical calculations, thus the flexural vibration transfer properties of the high- pressure periodic pipe can be precisely calculated by taking the fluid structure interaction between the pipe and oil into consideration. This study provides an effective way for the vibration control of the hydraulic system.
基金Project supported by the National Natural Science Foundation of China (No. 10272069) and Shanghai Key Project Program.
文摘The problem of radial symmetric motion for a solid sphere composed of a class of generalized incompressible neo-Hookean materials, subjected to a suddenly applied surface tensile dead load, is examined.The analytic solutions for this problem and the motion equation of cavity that describes cavity formation and growth with time are obtained. The e?ect of radial perturbation of the materials on cavity formation and its motion is discussed. The plane of the perturbation parameters of the materials is divided into four regions. The existential conditions and qualitative properties of solutions of the motion equation of the cavity are studied in di?erent parameters’ regions in detail. It is proved that the cavity motion with time is a nonlinear periodic vibration. The vibration center is then determined.
基金Project supported by the National Natural Science Foundation of China (No.10272069)Shanghai Leading Academic Discipline Project (No.Y0103)
文摘Dynamical formation and growth of compressible thermal-hyperelastic Gent-Thomas cavity in a sphere composed of two inmaterials were discussed under the case of a non-uniform temperature field and the surface dead loading. The mathematical model was first presented based on the dynamical theory of finite deformations. An exact differential relation between the void radius and surface load was obtained by using the variable transformation method. By numerical computation, critical loads and cavitation growth curves were obtained for different temperatures. The influence of the temperature and material parameters of the composed sphere on the void formation and growth was considered and compared with those for static analysis. The results show that the cavity occurs stiddenly with a finite radius and its evolvement with time displays a non-linear periodic vibration and that the critical load decreases with the increase of temperature and also the dynamical critical load is lower than the static critical load under the same conditions.
文摘The authors performed single mobile microtremor measurements at 218 sites at KMA (Kingston Metropolitan Area) with the objective of estimating the amplification effects due to the earthquake ground motion on the surface geology. The Fourier transform was applied to the most stationary parts of the triaxial wave motion recordings for each individual site and applied the traditional Nakamura technique, namely, the horizontal to vertical spectral ratio (H/V) to retrieve the predominant shear wave period of vibration of the soil profiles above the bedrock. The results yield predominant long periods of about 3.0-4.0 s in the port area and the waterfront, 1.0-2.0 s in the central part of Kingston, 0.3-1.0 s in Portmore and very stiff soil conditions in the surrounding area of the city. The results coincide fairly well with previous geological studies in the region, geotechnical data in boreholes, gravimetric measurements and strong motion recordings, suggesting a high degree of amplification of ground motion in the whole period range of engineering interest. Additionally, the authors obtained the liquefaction vulnerability factor Kg proposed by Nakamura based on the H/V ratio of microtremors. The results suggest that the port area, the waterfront and the Port Royal are highly susceptible to liquefaction. Finally, the authors obtained fundamental periods of vibration based on microtremor measurements on the roof and the basement of four important buildings in the KMA and indicated future lines of research employing ambient noise measurements on structures.