期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
Wind-Vortex-Induced Vibrations of a Deepwater Jacket Pipe and Vibration Suppression Using a Nonlinear Energy Sink
1
作者 LIU Liqin YU Yongjun CHEN Yiqun 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期633-642,共10页
The purpose of this study is to investigate the suppression effect of a nonlinear energy sink(NES)on the wind-vortex-induced pipe vibration and explore the influence of damping,stiffness,and NES installation position ... The purpose of this study is to investigate the suppression effect of a nonlinear energy sink(NES)on the wind-vortex-induced pipe vibration and explore the influence of damping,stiffness,and NES installation position on the suppression effect.In this work,the wind-vortex-induced vibration of an elastic pipe of a deepwater jacket was studied,and vibrations were suppressed by using an NES.A van der Pol wake oscillator was used to simulate vortex-induced force,and the dynamic equation of the pipe considering the NES was established.The Galerkin method was applied to discretize the motion equation,and the vortex-induced vibration(VIV)of the pipe at reduced wind speeds was numerically analyzed.The novelty of this research is that particle swarm optimization was used to optimize the parameters of the NES to improve vibration suppression.The influence of the installation position,nonlinear stiffness,and damping parameters of the NES on vibration suppression was analyzed.Results showed that the optimized parameter combinations of the NES can effectively reduce wind-vortex-induced pipe vibration.The installation position of the NES had a significant effect on vibration suppression,and the midpoint of the pipe was the optimal NES installation position.An increase in stiffness or a 10% decrease in damping may cause vibration suppression failure.The results of this study provide some guidance for VIV suppression in deepwater jacket pipes. 展开更多
关键词 deepwater jacket wind-vortex-induced vibration NES PSO vibration suppression effect analysis
下载PDF
Vibration Suppression for Active Magnetic Bearings Using Adaptive Filter with Iterative Search Algorithm
2
作者 Jin-Hui Ye Dan Shi +2 位作者 Yue-Sheng Qi Jin-Hui Gao Jian-Xin Shen 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期61-71,共11页
Active Magnetic Bearing(AMB) is a kind of electromagnetic support that makes the rotor movement frictionless and can suppress rotor vibration by controlling the magnetic force. The most common approach to restrain the... Active Magnetic Bearing(AMB) is a kind of electromagnetic support that makes the rotor movement frictionless and can suppress rotor vibration by controlling the magnetic force. The most common approach to restrain the rotor vibration in AMBs is to adopt a notch filter or adaptive filter in the AMB controller. However, these methods cannot obtain the precise amplitude and phase of the compensation current. Thus, they are not so effective in terms of suppressing the vibrations of the fundamental and other harmonic orders over the whole speed range. To improve the vibration suppression performance of AMBs,an adaptive filter based on Least Mean Square(LMS) is applied to extract the vibration signals from the rotor displacement signal. An Iterative Search Algorithm(ISA) is proposed in this paper to obtain the corresponding relationship between the compensation current and vibration signals. The ISA is responsible for searching the compensating amplitude and shifting phase online for the LMS filter, enabling the AMB controller to generate the corresponding compensation force for vibration suppression. The results of ISA are recorded to suppress vibration using the Look-Up Table(LUT) in variable speed range. Comprehensive simulations and experimental validations are carried out in fixed and variable speed range, and the results demonstrate that by employing the ISA, vibrations of the fundamental and other harmonic orders are suppressed effectively. 展开更多
关键词 Active Magnetic Bearing(AMB) Adaptive filter Iterative search algorithm Least mean square(LMS) vibration suppression
下载PDF
Effects of time-delayed vibration absorber on bandwidth of beam for low broadband vibration suppression 被引量:1
3
作者 Xiuting SUN Yipeng QU +1 位作者 Feng WANG Jian XU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第10期1629-1650,共22页
The effects of time-delayed vibration absorber(TDVA) on the dynamic characteristics of a flexible beam are investigated. First, the vibration suppression effect of a single TDVA on a continuous beam is studied. The fi... The effects of time-delayed vibration absorber(TDVA) on the dynamic characteristics of a flexible beam are investigated. First, the vibration suppression effect of a single TDVA on a continuous beam is studied. The first optimization criterion is given,and the results show that the introduction of time-delayed feedback control(TDFC) is beneficial to improving the vibration suppression at the anti-resonance band. When a single TDVA is used, the anti-resonance is located at a specific frequency by the optimum design of TDFC parameters. Then, in order to obtain low-frequency and broad bands for vibration suppression, multiple TDVAs are uniformly distributed on a continuous beam,and the relationship between the dynamic responses and the TDFC parameters is investigated. The obtained relationship shows that the TDVA has a significant regulatory effect on the vibration behavior of the continuous beam. The effects of the number of TDVAs and the nonlinearity on the bandgap variation are discussed. As the multiple TDVAs are applied, according to the different requirements on the location and bandwidth of the effective vibration suppression band, the optimization criteria for the TDFC parameters are given, which provides guidance for the applications of TDVAs in practical projects such as bridge and aerospace. 展开更多
关键词 time-delayed vibration absorber(TDVA) time-delayed feedback control(TDFC) parameter design criterion broadband vibration suppression
下载PDF
Enhanced vibration suppression and energy harvesting in fluid-conveying pipes
4
作者 Yang JIN Tianzhi YANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第9期1487-1496,共10页
A novel vibration absorber is designed to suppress vibrations in fluidconveying pipes subject to varying fluid speeds.The proposed absorber combines the fundamental principles of nonlinear energy sinks(NESs)and nonlin... A novel vibration absorber is designed to suppress vibrations in fluidconveying pipes subject to varying fluid speeds.The proposed absorber combines the fundamental principles of nonlinear energy sinks(NESs)and nonlinear energy harvesters(NEHs).The governing equation is derived,and a second-order discrete system is used to assess the performance of the developed device.The results demonstrate that the proposed absorber achieves significantly enhanced energy dissipation efficiency,reaching up to 95%,over a wider frequency range.Additionally,it successfully harvests additional electric energy.This research establishes a promising avenue for the development of new nonlinear devices aimed at suppressing fluid-conveying pipe vibrations across a broad frequency spectrum. 展开更多
关键词 fuid-conveying pipe vibration suppression nonlinear energy sink(NES) electromagnetic energy harvesting
下载PDF
Adaptive PI Control Strategy for Flat Permanent Magnet Linear Synchronous Motor Vibration Suppression 被引量:5
5
作者 MENG Fanwei LIU Chengying +1 位作者 LI Zhijun WANG Liping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第1期11-20,共10页
Due to low damping ratio, fiat permanent magnet linear synchronous motor's vibration is difficult to be damped and the accuracy is limited. The vibration suppressing results are not good enough in the existing resear... Due to low damping ratio, fiat permanent magnet linear synchronous motor's vibration is difficult to be damped and the accuracy is limited. The vibration suppressing results are not good enough in the existing research because only the longitudinal direction vibration is considered while the normal direction vibration is neglected. The parameters of the direct-axis current controller are set to be the same as those of the quadrature-axis current controller commonly. This causes contradiction between signal noise and response. To suppress the vibration, the electromagnetic force model of the flat permanent magnet synchronous linear motor is formulated first. Through the analysis of the effect that direct-axis current noise and quadrature-axis current noise have on both direction vibration, it can be declared that the conclusion that longitudinal direction vibration is only related to the quadrature-axis current noise while the normal direction vibration is related to both the quadrature-axis current noise and direct-axis current noise. Then, the simulation test on current loop with a low-pass filter is conducted and the results show that the low-pass filter can not suppress the vibration but makes the vibration more severe. So a vibration suppressing strategy that the proportional gain of direct-axis current controller adapted according to quadrature-axis reference current is proposed. This control strategy can suppress motor vibration by suppressing direct-axis current noise. The experiments results about the effect of Kp and Ti on normal direction vibration, longitudinal vibration and the position step response show that this strategy suppresses vibration effectively while the motor's motion performance is not affected. The maximum reduction of vibration can be up to 40%. In addition, current test under rated load condition is also conducted and the results show that the control strategy can avoid the conflict between the direct-axis current and the quadrature-axis current under typical load. Adaptive PI control strategy can effectively suppress the flat permanent magnet linear synchronous motor's vibration without affecting the motor's performance. 展开更多
关键词 permanent magnet motor linear motor motor vibration vibration suppression
下载PDF
Multi-resonator coupled metamaterials for broadband vibration suppression 被引量:7
6
作者 Pengcheng ZHAO Kai ZHANG +1 位作者 Cheng ZHAO Zichen DENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第1期53-64,共12页
In this study,multi-resonator coupled metamaterials(MRCMs)with local resonators are proposed to obtain the multiple and wide band gaps.Kinetic models of the MRCMs are established,and the boundary conditions of the uni... In this study,multi-resonator coupled metamaterials(MRCMs)with local resonators are proposed to obtain the multiple and wide band gaps.Kinetic models of the MRCMs are established,and the boundary conditions of the unit cell are obtained with Bloch's theorem.The effects of structural parameters,including the mass of the resonator and the spring stiffness,on the distributions of the band gaps are studied.Furthermore,the frequency domain responses and the time domain responses are calculated for analyzing the structural vibration characteristics and the effects of damping on structural vibration.The results show that the frequency domain response can accurately express the distributions of the band gaps of the MRCMs,and we can increase the number and the width of the band gaps by using the MRCMs for the superior vibration suppression capability. 展开更多
关键词 multi-resonator coupled metamaterial(MRCM) band gap broadband vibration suppression
下载PDF
Experimental study on vibration suppression in a rotor system under base excitation using an integral squeeze film damper 被引量:3
7
作者 闫伟 He Lidong +2 位作者 Zhu Gang Wang Shengli Deng Zhe 《High Technology Letters》 EI CAS 2020年第4期349-359,共11页
Base excitation is one of common excitations in rotor system.In order to study the dynamic characteristics of rotor systems under base excitation and the effect of integral squeeze film dampers(ISFDs)on their dynamic ... Base excitation is one of common excitations in rotor system.In order to study the dynamic characteristics of rotor systems under base excitation and the effect of integral squeeze film dampers(ISFDs)on their dynamic characteristics,a single-disk rotor test rig,where mass imbalance and base excitation could be applied,is developed.Experimental research on the rotor system response under sinusoidal base excitation conditions with different frequencies and excitation forces is performed and the effect of ISFD on the dynamic characteristics of the rotor is investigated.The experimental results demonstrate that when the sinusoidal base excitation frequency approaches the first critical speed of the rotor system or the natural frequency of the rotor system base,strong vibration occurs in the rotor,indicating that the base excitation of the two frequencies has a greater impact on rotor system response.In addition,with the increase of the base excitation force,the vibration of the rotor will be increased.ISFDs can significantly inhibit the vibration due to unbalanced forces and sinusoidal base excitation in rotor systems.To a certain extent,ISFDs can improve the effect of sinusoidal base excitation with most frequencies on rotor system response,and they have a good vibration reduction effect for sinusoidal base excitation with different excitation forces. 展开更多
关键词 Jeffcott rotor dynamic characteristics base excitation integral squeeze film damper(ISFD) vibration suppression
下载PDF
Synchronous Vibration Suppression of Magnetic Bearing Systems without Angular Sensors 被引量:5
8
作者 Hongbo Sun Dong Jiang Jichang Yang 《CES Transactions on Electrical Machines and Systems》 CSCD 2021年第1期70-77,共8页
Active Magnetic Bearing(AMB)levitates rotor by magnetic force without friction,and it can provide active control force to suppress vibration while rotating.Most of vibration suppressing methods need angular speed sens... Active Magnetic Bearing(AMB)levitates rotor by magnetic force without friction,and it can provide active control force to suppress vibration while rotating.Most of vibration suppressing methods need angular speed sensors to obtain rotating speed,but in many occasions,angular speed sensor is difficult to install or is difficult to guarantee reliability.This paper proposed a vibration suppressing strategy without angular speed sensor based on generalized integrator and frequency locked loop(GI-FLL)and phase shift generalized integrator(PSGI).GI-FLL and high-pass filter estimate frequency from control current,PSGI is applied to generate compensating signal.Firstly,model of AMB system expressed by transfer function is established and effect of centrifugal force is analyzed.Then,principle and process of vibration suppressing strategy is introduced.Influence of parameters are analyzed by root locus and bode diagram.Simulation results display the process of frequency estimation and performance of displacement.Experiments are carried on a test rig,results of simulations and experiments demonstrate the effectiveness of proposed vibration suppressing strategy. 展开更多
关键词 Active Magnetic Bearing(AMB) vibration suppression frequency estimation phase shift generalized integrator(PSGI)
下载PDF
Experimental Investigation of Disturbing the Flow Field on the Vortex-Induced Vibration of Deepwater Riser Fitted with Gas Jetting Active Vibration Suppression Device 被引量:1
9
作者 LI Peng JIANG Zhen-xing +4 位作者 LIU Yu WANG Yu GUO Hai-yan WANG Fei ZHANG Yong-bo 《China Ocean Engineering》 SCIE EI CSCD 2020年第3期341-351,共11页
An experimental investigation on the disturbance effect of jet-type active vibration suppression device on vortexinduced vibration of deep-sea riser was carried out in the wave-flow combined flume.The vibration suppre... An experimental investigation on the disturbance effect of jet-type active vibration suppression device on vortexinduced vibration of deep-sea riser was carried out in the wave-flow combined flume.The vibration suppression device was designed in which the jet pipe was horizontally fixed to the front end of the riser.By varying three different excitation spacings and multi-stage outflow velocities,the influence law of the dominant frequency,dimensionless displacement and other dynamic response parameters was studied under different excitation spacings,and the mechanism and sensitive characteristics of the disturbance suppression were explored.The results indicate that the variation of excitation spacing makes gas curtain enter the strong disturbed flow region at different velocities and angles,and the coupling relationship between excitation spacing and reduced velocity is the key factor to enter the strong disturbed flow region to achieve the optimal disturbance suppression.In the strong disturbed flow region,the influence of gas curtain on the dominant frequency is obviously affected by the flow velocity,while the vibration displacement is stable at the same amplitude and is weakly affected by the flow velocity.Gas curtain can effectively disturb the formation of vortex shedding,destroy the strong nonlinear coupled vibration of the riser,and achieve better vibration suppression effect.In the weak disturbed flow region,the vortex length of the riser tail is prolonged,the strong nonlinear coupled vibration of the riser is gradually restored,and the vibration suppression effect of the device gradually decreases. 展开更多
关键词 deepwater riser vortex-induced vibration(VIV) active vibration suppression jet-type excitation spacing disturbance flow
下载PDF
Finite-time tracking control and vibration suppression based on the concept of virtual control force for flexible two-link space robot 被引量:1
10
作者 Rong-Hua Lei Li Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第3期874-883,共10页
The dynamic modeling, finite-time trajectory tracking control and vibration suppression of a flexible two-link space robot are studied. Firstly, the dynamic model of the system is established by combining Lagrange met... The dynamic modeling, finite-time trajectory tracking control and vibration suppression of a flexible two-link space robot are studied. Firstly, the dynamic model of the system is established by combining Lagrange method with assumed mode method. In order to ensure that the base attitude and the joints of space robot can reach the desired positions within a limited time, a non-singular fast terminal sliding mode(NFTSM) controller is designed, which realizes the finite-time convergence of the trajectory tracking errors. Subsequently, for the sake of suppressing the vibrations of flexible links, a hybrid trajectory based on the concept of the virtual control force is developed, which can reflect the flexible modes and the trajectory tracking errors simultaneously. By modifying the original control scheme, a NFTSM hybrid controller is proposed. The hybrid control scheme can not only realized attitude stabilization and trajectory tracking of joints in finite time, but also provide a new method of vibration suppression. The simulation results verify the effectiveness of the designed hybrid control strategy. 展开更多
关键词 FINITE-TIME Terminal sliding mode Flexible links vibration suppression Virtual control force
下载PDF
Vibration suppression of magnetostrictive laminated beams resting on viscoelastic foundation 被引量:1
11
作者 A.M.ZENKOUR H.D.EL-SHAHRANY 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第8期1269-1286,共18页
The vibration suppression analysis of a simply-supported laminated composite beam with magnetostrictive layers resting on visco-Pasternak’s foundation is presented.The constant gain distributed controller of the velo... The vibration suppression analysis of a simply-supported laminated composite beam with magnetostrictive layers resting on visco-Pasternak’s foundation is presented.The constant gain distributed controller of the velocity feedback is utilized for the purpose of vibration damping.The formulation of displacement field is proposed according to Euler-Bernoulli’s classical beam theory(ECBT),Timoshenko’s first-order beam theory(TFBT),Reddy’s third-order shear deformation beam theory,and the simple sinusoidal shear deformation beam theory.Hamilton’s principle is utilized to give the equations of motion and then to describe the vibration of the current beam.Based on Navier’s approach,the solution of the dynamic system is obtained.The effects of the material properties,the modes,the thickness ratios,the lamination schemes,the magnitudes of the feedback coefficient,the position of magnetostrictive layers at the structure,and the foundation modules are extensively studied and discussed. 展开更多
关键词 vibration suppression laminated composite beam magnetostrictive material visco-Pasternak’s foundation
下载PDF
Research on Vibration Suppression of the Finite Plate with Square Steel Beams Using Traveling Wave Method 被引量:1
12
作者 焦映厚 侯守武 +2 位作者 刘春川 陈照波 李明章 《Journal of Donghua University(English Edition)》 EI CAS 2012年第4期283-287,共5页
The vibration suppression of the finite plate with square steel beams is studied using traveling wave method. The finite plate with square beams is modeled as the coupling systems between the plate flexural motion and... The vibration suppression of the finite plate with square steel beams is studied using traveling wave method. The finite plate with square beams is modeled as the coupling systems between the plate flexural motion and the flexural and torsional motions for the square beams. The vibration response at any position of the coupling structure can be obtained by wave method. Numerical results show that comparing to finite element method (FEM), not only the low frequency but also the medium-high frequency vibration response of the finite plate with square beam can be effectively calculated by wave method. The suppression effect can be increased as the square beam is located at one-third of the length of plate or increasing the height of the beam. The study provides reference for arranged square beams applying to vibration suppression of ship and train structures. 展开更多
关键词 finite plate traveling wave method square steel beam vibration suppression
下载PDF
A Modified Iterative Learning Control Approach for the Active Suppression of Rotor Vibration Induced by Coupled Unbalance and Misalignment
13
作者 Yifan Bao Jianfei Yao +1 位作者 Fabrizio Scarpa Yan Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期242-253,共12页
This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibr... This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibration of the rotor is provided by an active magnetic actuator(AMA).The iterative gain of the MILC algorithm here presented has a self-adjustment based on the magnitude of the vibration.Notch filters are adopted to extract the synchronous(1×Ω)and twice rotational frequency(2×Ω)components of the rotor vibration.Both the notch frequency of the filter and the size of feedforward storage used during the experiment have a real-time adaptation to the rotational speed.The method proposed in this work can provide effective suppression of the vibration of the rotor in case of sudden changes or fluctuations of the rotor speed.Simulations and experiments using the MILC algorithm proposed here are carried out and give evidence to the feasibility and robustness of the technique proposed. 展开更多
关键词 Rotor vibration suppression Modified iterative learning control UNBALANCE Parallel misalignment Active magnetic actuator
下载PDF
Design of distributed dynamic absorbers for vibration suppression of panel structures
14
作者 Liyuan Li Bin Li Zehua Xu 《Acta Mechanica Sinica》 SCIE EI CAS 2024年第7期164-180,共17页
Distributed dynamic absorbers have many advantages such as wide frequency bandwidth for vibration suppression,strong detuning adaptability,and high system stability,making them very suitable for the vibration and nois... Distributed dynamic absorbers have many advantages such as wide frequency bandwidth for vibration suppression,strong detuning adaptability,and high system stability,making them very suitable for the vibration and noise control of continuous structures.Therefore,they have broad application prospects in various fields such as transportation,aviation,and aerospace.However,there are still many challenges in the engineering applications of distributed dynamic absorbers for vibration suppression,including the engineering realization of the optimal damping of traditional optimal coherence dynamic absorbers,and the engineering applicability of the finite periodic array dynamic absorbers.Based on the damping material properties obtained by the dynamic mechanical analyzer tests,this paper establishes the finite element model of the cantilever-beam-type dynamic absorber with constrained damping layers,aiming to realize the accurate determination of the optimal damping.Experiments are conducted by attaching the traditional dynamic absorbers with the optimal damping to a thin-walled panel with four clamped edges.Results show that the vibration of the panel is well suppressed,with the reduction of the frequency response peak larger than 14 dB and the reduction ratio of RMS larger than 58%within 500 Hz.Afterwards,the periodically arrayed dynamic absorbers are designed according to the bandgap regulation method.The tuning behavior of the arrayed dynamic absorbers by changing designing parameters is investigated.The vibration reduction effect of arrayed dynamic absorbers is compared with that of the traditional dynamic absorbers under the same mass ratio through experiments.Results indicate that the arrayed dynamic absorbers are easier to design,and have a similar reduction effect on the modal vibration of the thin panel as the traditional dynamic absorbers within a narrow frequency range near the natural frequency,while they perform unsatisfactory in a broad band.Significantly,if the appropriate frequency and damping of the arrayed absorbers are chosen,a relatively wide bandgap can also be generated,which shows high engineering applicability.The research work in this paper provides beneficial reference for the design of distributed dynamic absorbers suitable for vibration suppression of thinwalled panel structures. 展开更多
关键词 Distributed dynamic absorbers Engineering realization of the optimal damping vibration suppression Low-frequency and broadband
原文传递
Bandgap formation and low-frequency structural vibration suppression for stiffened plate-type metastructure with general boundary conditions
15
作者 Tian ZHAO Zhichun YANG +1 位作者 Yanlong XU Wei TIAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第10期210-228,共19页
Metastructures with unique mechanical properties have shown attractive potential application in vibration and noise reduction.Typically,most of the metastructures deal with the vibration bandgap properties of infinite... Metastructures with unique mechanical properties have shown attractive potential application in vibration and noise reduction.Typically,most of the metastructures deal with the vibration bandgap properties of infinite structures without considering specific boundary condition and dynamic behaviors,which cannot be directly applied to the engineering structures.In this research,we design a Stiffened Plate-type Metastructure(SPM)composed of a plate with periodic stiffeners and cantilever beam-type resonators subjected to general boundary conditions for low-frequency vibration suppression.The effects of boundary conditions and the number and orientation of the stiffeners on Locally Resonant(LR)type bandgap properties in SPM are further investigated.An analytical modeling framework is developed to predict the bandgap formations and vibration behaviors of SPMs in finite-size configuration.The governing equations of the SPM reinforced by various arrangements of stiffeners are derived based on the first-order shear deformation theory and Hamilton’s principle,and a Fourier series combined with auxiliary functions is employed to satisfy the arbitrary boundary conditions.Finite element analysis and experimental investigations of vibration behaviors for the SPM are carried out to validate the accuracy and reliability of the present analytical model.For practical designs of the SPMs with specific boundary conditions,it is found that there exist optimal numbers of stiffeners and resonators which can produce the significant LR-type bandgap behaviors.Furthermore,various arrangements of stiffeners and resonators are explored for different boundary conditions by breaking the requirement of spatially periodicity.It is shown that for the designed SPM,the vibration modes of its host structure should be considered to widen the frequency range in which the resonators transfer and store energy,and hence improve the performance of low-frequency vibration suppression.The present work can provide a significant theoretical guidance for the engineering application of metamaterial stiffened structures。 展开更多
关键词 Bandgap Locally resonant Metastructure Stiffened plate vibration suppression
原文传递
Extended-state-observer-based robust torsional vibration suppression for rolling mill main drive system with input saturation
16
作者 Jia-qiang Chen Shu-zong Chen +2 位作者 Chang-chun Hua Cheng Jia Cheng Qian 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2023年第5期985-993,共9页
A robust torsional vibration suppression strategy is proposed for the main drive system of the rolling mill subject to uncertainties,disturbances and input saturation.With given model information incorporated into obs... A robust torsional vibration suppression strategy is proposed for the main drive system of the rolling mill subject to uncertainties,disturbances and input saturation.With given model information incorporated into observer design,an extended state observer that relies only on roller speed measurements is developed to estimate the system states and lumped uncertainties of the rolling mill main drive system.To handle the motor torque saturation,an auxiliary signal system with the same order as the plant is constructed.The error between the control input and plant input is taken as the input of the constructed auxiliary system,and a number of signals are generated to compensate for the effect of the motor torque saturation.Furthermore,a robust output feedback controller is introduced to obtain better transient and steady-state performance of the rolling mill main drive system and the stability of the closed-loop system is strictly proved via Lyapunov theory.Finally,comparative simulations are performed to verify the effectiveness and superiority of the proposed control strategy. 展开更多
关键词 Rolling mill Main drive system vibration suppression Extended state observer Input saturation
原文传递
Vibration suppression of thin-walled workpiece machining considering external damping properties based on magnetorheological fluids flexible fixture 被引量:10
17
作者 Ma Junjin Zhang Dinghua +2 位作者 Wu Baohai Luo Ming Chen Bing 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第4期1074-1083,共10页
Milling of the thin-walled workpiece in the aerospace industry is a critical process due to the high flexibility of the workpiece. In this paper, a flexible fixture based on the magnetorheological (MR) fluids is desig... Milling of the thin-walled workpiece in the aerospace industry is a critical process due to the high flexibility of the workpiece. In this paper, a flexible fixture based on the magnetorheological (MR) fluids is designed to investigate the regenerative chatter suppression during the machining. Based on the analysis of typical structural components in the aerospace industry, a general complex thin-walled workpiece with fixture and damping constraint can be equivalent as a rectangular cantilever beam. On the basis of the equivalent models, natural frequency and mode shape function of the thin-walled workpiece is obtained according to the Euler-Bernoulli beam assumptions. Then, the displacement response function of the bending vibration of the beam is represented by the product of all the mode shape function and the generalized coordinate. Furthermore, a dynamic equation of the workpiece-fixture system considering the external damping factor is proposed using the Lagrangian method in terms of all the mode shape function and the generalized coordinate, and the response of system under the dynamic cutting force is calculated to evaluate the stability of the milling process under damping control. Finally, the feasibility and effectiveness of the proposed approach are validated by the impact hammer experiments and several machining tests. (C) 2016 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics. 展开更多
关键词 Chatter Machining vibration suppression MILLING Stability lobe diagram Thin-walled workpiece
原文传递
Vibration suppression of an elastic beam with boundary inerter-enhanced nonlinear energy sinks 被引量:10
18
作者 Zhen Zhang Hu Ding +1 位作者 Ye-Wei Zhang Li-Qun Chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2021年第3期387-401,I0001,共16页
Nonlinear vibration absorbers have been widely used for vibration suppression of elastic structures,but they were usually placed within the structures.However,designing such a vibration damping device within an engine... Nonlinear vibration absorbers have been widely used for vibration suppression of elastic structures,but they were usually placed within the structures.However,designing such a vibration damping device within an engineering structure is possibly difficult.In this paper,an inertial nonlinear energy sinks(NES)is mounted on the boundaries of the elastic beam to suppress its vibration.Although this vibration suppression approach is more in line with engineering requirements,it introduces nonlinear oscillators at boundaries.This brings certain difficulties to the structural vibration analysis and the optimal absorber design.An approximate analytical approach for the steady-state response is developed in this work and verified by numerical solutions.The comparison with the uncontrolled system demonstrates the high-efficiency vibration suppression of the inertial NES installed on the boundary.Besides,the optimization of the NES parameters is performed.Resonance amplitude of the elastic structure can be reduced by 98%with the optimized NES.In summary,this paper proposes a novel approach to suppress the bending vibration of elastic structures through boundary NESs.The vibration reduction effect is very significant,and it is more feasible to implement.Therefore,this work is helpful to study the vibration of elastic structures with nonlinear boundaries and to promote the application of nonlinear vibration absorbers. 展开更多
关键词 Nonlinear energy sink Elastic beam vibration suppression Nonlinear boundary Inerter
原文传递
Research on vibration suppression of a mistuned blisk by a piezoelectric network 被引量:6
19
作者 Jiuzhou LIU Lin LI +1 位作者 Yu FAN Pengcheng DENG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第2期285-299,共15页
The work aims to provide a further investigation of the dynamic characteristics of an integral bladed disk(also called ‘blisk') with a Parallel Piezoelectric Network(PPN). The PPN is constructed by parallelly in... The work aims to provide a further investigation of the dynamic characteristics of an integral bladed disk(also called ‘blisk') with a Parallel Piezoelectric Network(PPN). The PPN is constructed by parallelly interconnecting the piezoelectric patches distributed in the blisk. Two kinds of PPN are considered, namely mono-periodic PPN and bi-periodic PPN. The former has a piezoelectric patch in each sector, and the later has one patch every few sectors. The vibration suppression performance of both kinds of PPN has been studied through modal analysis, forced response analysis, and statistical analysis. The research results turn out that the PPN will only affect mechanical frequencies near the electrical frequency clusters slightly, and the bi-periodic PPN will make the nodal diameter spectrum of the modes more complex, but the amplitude corresponding to the new nodal diameter component is much smaller than that of the nodal diameter component corresponding to the mono-periodic system. The mechanical coupling between the blades and the disk plays an important role in the damping effect of the PPN, and it should be paid attention to in applications. The mono-periodic PPN can effectively suppress the amplitude magnification of the forced response induced by the mistuning of the blisk; meanwhile, it can mitigate the vibration localization of the mistuned electromechanical system. If piezoelectric patches are set only in part of the sectors, the bi-periodic PPN still has a vibration suppression ability, but the effect is related to the number and spatial distribution of the piezoelectric patches. 展开更多
关键词 Amplitude magnification Bi-periodic BLISK Mistuning Mono-periodic Parallel piezoelectric network Statistical analysis vibration suppression
原文传递
VIBRATION SUPPRESSION OF CANTILEVER LAMINATED COMPOSITE PLATE WITH NONLINEAR GIANT MAGNETOSTRICTIVE MATERIAL LAYERS 被引量:2
20
作者 Yongfei Zhang Haomiao Zhou Youhe Zhou 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2015年第1期50-61,共12页
In this paper, a nonlinear and coupled constitutive model for giant magnetostrictive materials (GMM) is employed to predict the active vibration suppression process of cantilever laminated composite plate with GMM l... In this paper, a nonlinear and coupled constitutive model for giant magnetostrictive materials (GMM) is employed to predict the active vibration suppression process of cantilever laminated composite plate with GMM layers. The nonlinear and coupled constitutive model has great advantages in demonstrating the inherent and complicated nonlinearities of GMM in re- sponse to applied magnetic field under variable bias conditions (pre-stress and bias magnetic field). The Hamilton principle is used to derive the nonlinear and coupled governing differential equation for a cantilever laminated composite plate with GMM layers. The derived equation is handled by the finite element method (FEM) in space domain, and solved with Newmark method and an iteration process in time domain. The numerical simulation results indicate that the proposed active control system by embedding GMM layers in cantilever laminated composite plate can efficiently suppress vibrations under variable bias conditions. The effects of embedded placement of GMM layers and control gain on vibration suppression are discussed respectively in detail. 展开更多
关键词 giant magnetostrictive materials nonlinear constitutive model active vibration suppression cantilever laminated composite plate
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部