Vibration tests were carried out on three types of stiffened aluminum plates with fully clamped boundaries under random base excitation. During the test, the response of the specimens was monitored using strain gauges...Vibration tests were carried out on three types of stiffened aluminum plates with fully clamped boundaries under random base excitation. During the test, the response of the specimens was monitored using strain gauges. Based on the strain history, the accumulation of fatigue damage of the stiffened plates was estimated by means of the rainflow cycle counting technique and the Miner linear damage accumulation model in the time domain. Utilizing the change of natural frequencies, a nonlinear model was fitted for predicting the fatigue damage of plate and then the foregone failure criterion of 5% reduction in natural frequency is improved. The influence of section and spacing of the stiffeners on the vibration fatigue behavior of the aluminum plate was investigated. The results show that the fatigue life of aluminum plate increases with adding either T or L section riveted stiffeners. With the same cross-sectional area of stiffener, the T section stiffened plate shows longer fatigue life than L section stiffened plate. Meanwhile, the vibration fatigue life also shows great sensitivity to the spacing between the stiffeners.展开更多
An output-only modal identification method by a combination use of the peak-picking method and the cross spectrum methods are presented. Meanwhile, a novel mode shape optimum method of the deck is proposed. The method...An output-only modal identification method by a combination use of the peak-picking method and the cross spectrum methods are presented. Meanwhile, a novel mode shape optimum method of the deck is proposed. The methods are applied to the operational modal identification system of the Runyang Suspension Bridge, which can be used to obtain the modal parameters of the bridge from out-only data sets collected by its structural health monitoring system (SHMS). As an example, the vibration response data of the deck, cable and tower recorded during typhoon Matsa excitation are used to illustrate the program application. Some of the modal frequencies observed from deck vibration responses are also found in the vibration responses of the cable and the tower. The results show that some modal shapes of the deck are strongly coupled with the cable and the tower. By comparing the identification results from the operational modal system with those from field measurements, a good agreement between them is achieved, but some modal frequencies identified from the operational modal identification system (OMIS), such as L1 and L2, obviously decrease compared with those from the field measurements.展开更多
Recently,ambient vibration test(AVT)is widely used tu estimate dynamic characteristics of large civil struc- tures.Dynamic characteristics ean be affected by various envirnnmental factors such as humidity,intensity of...Recently,ambient vibration test(AVT)is widely used tu estimate dynamic characteristics of large civil struc- tures.Dynamic characteristics ean be affected by various envirnnmental factors such as humidity,intensity of wind,and temperature.Besides these environmental conditions,tire mass of vehicles may change the measured valnes when traffic-in- duced vibration is used as a source of AVT tor bridges.The effect of vehicle mass on dynamic characteristics is investigated through traffic-induced vibration tests on three bridges;(1)three-span suspension bridge(128m+404m+128m),(2) five-span continuous steel box girder bridge(59m+3@ 95m+59m),(3)simply supported plate girder bridge(46m). Acceleration histories of each measurement location under normal traffic are recorded for 30 minutes at field.These recor- ded histories are divided into individual vibrations and are combined into two groups aceording to the level of vibration;one by heavy vehicles such as trucks and buses and the other by light vehicles such as passenger cars.Separate processing of the two groups of signals shows that,for the middle and long-span bridges,the difference can be hardly detected,but,for the short span bridges whose mass is relatively small,the measured natural frequencies can change up to 5.4%.展开更多
The identification of variations in the dynamic behavior of structures is an important subject in structural integrity assessment.Improvement and servicing of offshore platforms in the marine environment with constant...The identification of variations in the dynamic behavior of structures is an important subject in structural integrity assessment.Improvement and servicing of offshore platforms in the marine environment with constant changing,requires understanding the real behavior of these structures to prevent possible failure.In this work,empirical and numerical models of jacket structure are investigated.A test on experimental modal analysis is accomplished to acquire the response of structure and a mathematical model of the jacket structure is also performed.Then,based on the control theory using developed reduction system,the matrices of the platform model is calibrated and updated.The current methodology can be applied to prepare the finite element model to be more adaptable to the empirical model.Calibrated results with the proposed approach in this paper are very close to those of the actual model and also this technique leads to a reduction in the amount of calculations and expenses.The research clearly confirms that the dynamic behavior of fixed marine structures should be designed and assessed considering the calibrated analytical models for the safety of these structures.展开更多
Components of mechanical product are assembled by structural joints,such as bolting,riveting,welding,etc.Structural joints introduce nonlinearity to some engineering structures,and the nonlinearity need to be modeled ...Components of mechanical product are assembled by structural joints,such as bolting,riveting,welding,etc.Structural joints introduce nonlinearity to some engineering structures,and the nonlinearity need to be modeled precisely.To meet serious quality requirements,it is necessary to detect and identify nonlinearity of mechanical products for structural optimization.Modal test to acquire a dynamic response has been applied for decades,which provides reliable results for finite element(FE)model updating.Here response control vibration test for identification of nonlinearity is presented.A nonlinear system can be regarded as linearity for particular steady state response,and classical linear analysis tool is applicable to extract modal data for particular response.First,its applicability is illustrated by some numerical simulations.Subsequently,it is implemented on experimental setup with structural joints by shaking table.The stiffness and damping function dependent of relative displacement are fitted to describe its inherent nonlinearity.The spring and damping forces are identified by harmonic balance method(HBM)to predict output response.Based on the identified results,the procedure is recommended that it allows a reliable measurement of nonlinearity with a certain accuracy.展开更多
In this paper, the seismic response of a newly designed steel jacket offshore platform with a float over deck (FOD) system in the Persian Gulf was investigated through incremental dynamic analysis. Comparison of inc...In this paper, the seismic response of a newly designed steel jacket offshore platform with a float over deck (FOD) system in the Persian Gulf was investigated through incremental dynamic analysis. Comparison of incremental dynamic analysis results for both directions of the platform shows that the lateral strength of the platform in the float over direction is less than its lateral strength in other direction. Dynamic characteristics measurement of a scale model of platform was also performed using forced vibration tests. From experimental measurement of the scaled model, it was observed that dynamic characteristic of the platform is different in the float over direction compared to the other direction. Therefore, a new offshore installed bracing system for the float over direction was proposed for improvement of seismic performance of this type of platform. Finally, the structure with the modified system was assessed using the probabilistic seismic assessment method as well as experimental measurement of its dynamic characteristics. It was observed that the proposed offshore installed bracing system improves the performance of platforms subjected to strong ground motion.展开更多
Morphing wing has attracted many research attention and effort in aircraft technology development because of its advantage in lift to draft ratio and flight performance.Morphing wing technology combines the lift and c...Morphing wing has attracted many research attention and effort in aircraft technology development because of its advantage in lift to draft ratio and flight performance.Morphing wing technology combines the lift and control surfaces into a seamless wing and integrates the primary structure together with the internal control system.It makes use of the wing aeroelastic deformation induced by the control surface to gain direct force control through desirable redistribution of aerodynamic forces.However some unknown mechanical parameters of the control system and complexity of the integrated structure become a main challenge for dynamic modeling of morphing wing.To solve the problem,a method of test data based modal sensitivity analysis is presented to improve the morphing wing FE model by evaluating the unknown parameters and identifying the modeling boundary conditions.An innovative seamless morphing wing with the structure integrated with a flexible trailing edge control system is presented for the investigation.An experimental model of actuation system driven by a servo motor for the morphing wing is designed and established.By performing a vibration test and the proposed modal sensitivity analysis,the unknown torsional stiffness of the servo motor and the boundary condition of the actuation mechanism model is identified and evaluated.Comparing with the test data,the average error of the first four modal frequency of the improved FE model is reduced significantly to less than 4%.To further investigate the morphing wing modeling,a wing box and then a whole morphing wing model including the skin and integrated with the trailing edge actuation system are established and tested.By using the proposed method,the FE model is improved by relaxing the constraint between the skin and actuation mechanism.The results show that the average error of the first three modal frequency of the improved FE model is reduced to less than 6%.The research results demonstrate that the presented seamless morphing wing integrated with a flexible trailing edge control surface can improve aerodynamic characteristics.By using the test data based modal sensitivity analysis method,the unknown parameter and boundary condition of the actuation model can be determined to improve the FE model.The problem in dynamic modeling of high accuracy for a morphing wing can be solved in an effective manner.展开更多
In this review article,the past investigations carried out on heritage structures using Ambient Vibration Test(AVT)and Operational Modal Analysis(OMA)for system identification(determination of dynamic properties like ...In this review article,the past investigations carried out on heritage structures using Ambient Vibration Test(AVT)and Operational Modal Analysis(OMA)for system identification(determination of dynamic properties like frequency,mode shape and damping ratios)and associated applications are summarized.A total of 68 major research studies on heritage structures around the world that are available in literature are surveyed for this purpose.At first,field investigations carried out on heritage structures prior to conducting AVT are explained in detail.Next,specifications of accelerometers,location of accelerometers and optimization of accelerometer networks have been elaborated with respect to the geometry of the heritage structures.In addition to this,ambient vibration loads and data acquisition procedures are also discussed.Further,the state of art of performing OMA techniques for heritage structures is explained briefly.Furthermore,various applications of system identification for heritage structures are documented.Finally,conclusions are made towards errorless system identification of heritage structures through AVT and OMA.展开更多
The main aim of this study is to understand the dynamic behavior of a cable-stayed bridge, using both numerical and experimental analysis. A three-dimensional finite element model for the bridge was developed for the ...The main aim of this study is to understand the dynamic behavior of a cable-stayed bridge, using both numerical and experimental analysis. A three-dimensional finite element model for the bridge was developed for the free vibration analysis and the ambient vibration properties of the bridge were determined through field testing. The experimental and numerical results of natural frequencies and the associated mode shapes were compared, and the high accuracy between them shows that the 3D model is capable of approximately representing the dynamic behavior of the bridge and the use of ambient vibration survives in future testing of the bridge. These dynamic characteristics can be used as the basis for updating the finite element model and also for global damage detection.展开更多
The phenomenon of ground vibration amplification caused by railway traffic was found and proved. In order to study the reasons which cause the amplification, a drop-weight test was performed. Then, the model for both ...The phenomenon of ground vibration amplification caused by railway traffic was found and proved. In order to study the reasons which cause the amplification, a drop-weight test was performed. Then, the model for both homogeneous and layered soil subjected to a harmonic vertical load was built. With the help of this model, displacement Green's function was calculated and the propagation laws of ground vibration responses were discussed. Results show that: 1) When applying a harmonic load on the half-space surface, the amplitude of ground vibrations attenuate with fluctuation, which is caused by the superposition of bulk and Rayleigh waves. 2) Vibration amplification can be enlarged under the conditions of embedded source and the soil layers. 3) In practice, the fluctuant attenuation should be paid attention to especially for the vibration receivers who are sensitive to single low frequencies(<10 Hz). Moreover, for the case of embedded loads, it should also be paid attention to that the receivers are located at the place where the horizontal distance is similar to embedded depth, usually 10 to 30 m for metro lines.展开更多
p;Calculation;Diagnosis The vibration measuring standard for compound machinery utilized in modern industrial production will be employed for the application of detecting technologies.The vibration intensity can be ob...p;Calculation;Diagnosis The vibration measuring standard for compound machinery utilized in modern industrial production will be employed for the application of detecting technologies.The vibration intensity can be obtained by selecting the detecting method to obtain the speed of mechanical vibration,and technicians can examine whether the vibrating machinery is in a proper functioning state based on the value of vibration intensity,allowing for thorough fault diagnosis.In order to provide useful diagnosis ideas for technicians,this study examines the measurement of mechanical vibration and investigates the calculating method of mechanical vibration intensity.展开更多
The relation of mass, stiffness and rate of damping is obtained by using the mechanical analysis of the obstructive vibration system of two dimensions for the design of the obstructive vibration system of more freedom...The relation of mass, stiffness and rate of damping is obtained by using the mechanical analysis of the obstructive vibration system of two dimensions for the design of the obstructive vibration system of more freedom and the micro vibration test bed. The result of stimulational experiment indicates that the isolation of vibration of this system is satisfactory. The design method of vibration can be used as the reference to ultra precision machine tool, super micro orientation machanism and so on.展开更多
During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vib...During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vibration-based health monitoring methods is to seek some damage indices that are sensitive to structural damage, This paper proposes an online structural health monitoring method for long-span suspension bridges using wavelet packet transform (WPT). The WPT- based method is based on the energy variations of structural ambient vibration responses decomposed using wavelet packet analysis. The main feature of this method is that the proposed wavelet packet energy spectrum (WPES) has the ability to detect structural damage from ambient vibration tests of a long-span suspension bridge. As an example application, the WPES-based health monitoring system is used on the Runyang Suspension Bridge under daily environmental conditions. The analysis reveals that changes in environmental temperature have a long-term influence on the WPES, while the effect of traffic loadings on the measured WPES of the bridge presents instantaneous changes because of the nonstationary properties of the loadings. The condition indication indices VD reflect the influences of environmental temperature on the dynamic properties of the Runyang Suspension Bridge. The field tests demonstrate that the proposed WPES-based condition indication index VD is a good candidate index for health monitoring of long-span suspension bridges under ambient excitations.展开更多
The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a...The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a real-coded accelerating genetic algorithm (RAGA). The objective functions are defined based on natural frequency and modal assurance criterion (MAC) metrics to evaluate the updated FEM. Two objective functions are defined to fully account for the relative errors and standard deviations of the natural frequencies and MAC between the AVT results and the updated FEM predictions. The dynamically updated FEM of the bridge can better represent its structural dynamics and serve as a baseline in long-term health monitoring, condition assessment and damage identification over the service life of the bridge .展开更多
The capacity and size of hydro-generator units are increasing with the rapid development of hydroelectric enterprises, and the vibration of the powerhouse structure has increasingly become a major problem. Field testi...The capacity and size of hydro-generator units are increasing with the rapid development of hydroelectric enterprises, and the vibration of the powerhouse structure has increasingly become a major problem. Field testing is an important method for research on dynamic identification and vibration mechanisms. Research on optimal sensor placement has become a very important topic due to the need to obtain effective testing information from limited test resources. To overcome inadequacies of the present methods, this paper puts forward the triaxial effective independence driving-point residue (EfI3-DPR3) method for optimal sensor placement. The Efl3-DPR3 method can incorporate both the maximum triaxial modal kinetic energy and linear independence of the triaxial target modes at the selected nodes. It was applied to the optimal placement oftriaxial sensors for vibration testing in a hydropower house, and satisfactory results were obtained. This method can provide some guidance for optimal placement of triaxial sensors of underground powerhouses.展开更多
To simulate the fatigue characteristics of the pile-board structure under long-term dynamic load, using the in-situ dynamic testing system DTS-1, the forced vibration loading was repeated one million times at differen...To simulate the fatigue characteristics of the pile-board structure under long-term dynamic load, using the in-situ dynamic testing system DTS-1, the forced vibration loading was repeated one million times at different cross-sections of the pile-board structure for high-speed railway. The dynamic deformation, permanent deformation and dynamic stress of main reinforcements were measured. The test results show that the dynamic responses of the pile-board structure almost did not vary with the forced vibration times under the simulated trainload. After one million times of forced vibration, the permanent deformations of the midspan section of intermediate span and midspan section of side span were 0.7 mm and 0. 6 mm, respectively, and there was no accumulative plastic deformation at the bearing section of intermediate span.展开更多
Cross laminated timber(CLT)panels,which are used as load bearing plates and shear panels in timber structures,can serve as roofs,walls and floors.Since timber is construction material with relatively less stiffness,th...Cross laminated timber(CLT)panels,which are used as load bearing plates and shear panels in timber structures,can serve as roofs,walls and floors.Since timber is construction material with relatively less stiffness,the design of such structures is often driven by serviceability criteria,such as deflection and vibration.Therefore,accurate vibration and elastic properties are vital for engineered CLT products.The objective of this research is to explore a method to determine the natural frequencies of orthotropic wood plates efficiently and fast.The method was developed based on vibration signal processing by wavelet to acquire the effective sample data,and a model developed by artificial neural network(ANN)to achieve the prediction of nature frequencies.First,experiments were performed to obtain vibration signals of single-layer plates.The vibration signals were then processed by wavelet packet transform to extract the eigenvectors,which served as the samples to train the ANN model.The trained model was employed to predict three nature frequencies of other test specimens.The results showed that the proposed method can produce predicted frequencies fast and efficiently within 10%of the measured values.展开更多
Conventional modal parameter identifications are usually based on frequencyresponse functions, which require measurements of both the input force and the resulting response.However, in many cases, only response data a...Conventional modal parameter identifications are usually based on frequencyresponse functions, which require measurements of both the input force and the resulting response.However, in many cases, only response data are available while the actual excitations (such aswind/wave load) are not measurable. Modal parameters estimation must base itself on response-onlydata. Over the past years, many time-domain modal parameter identification techniques fromoutput-only are proposed. A poly-reference frequency-domain modal identification scheme onresponse-only is presented. It is based on coupling the cross-correlation theory with conventionalfrequency-domain modal parameter extraction. An experiment using an airplane model is performed toverify the proposed method.展开更多
The complex terrain environment in the hilly land directly affects the operational reliability of agricultural robots.In order to study the impact of road irregularity on walking chassis vibration,the 3CYLZ-750 remote...The complex terrain environment in the hilly land directly affects the operational reliability of agricultural robots.In order to study the impact of road irregularity on walking chassis vibration,the 3CYLZ-750 remote-controlled weeding machine which is applied to orchards was taken as the object of study,and the rear roller was selected as the object of observation to reveal the rules under which the vibration of the track chassis changes as there is a sudden change in road surface elevation.A column-type test-to-pass method based on unit excitation was proposed in this study.The excitation behavior and action process were analyzed by category.A critical acceleration prediction model was built and verified by virtual simulation and hard road surface excitation testing.The results showed that at the forward velocity of 0-2.5 km/h and exciter height of 20-100 mm,the vertical vibration acceleration of the target roller was significantly affected by Track Contact Point Centrifugal Acceleration(TCPCA).As TCPCA increased,the change rate of vertical vibration acceleration decreased,reaching a minimum of[−13.8,28.8];as TCPCA decreased,the vertical vibration acceleration tended to increase positively at a maximum variation range of[−13.3,42.2].The measured and simulated macroscopic change rules were consistent with the theoretical analysis,further verifying the correctness of variable extraction,and providing a research basis for the accurate modification and improvement of the model.The research conclusions can lay a theoretical foundation for analyzing the walking reliability of the track chassis,and provide a design basis and technical support for the development of a tracked agricultural robot chassis for the hilly land in the future.展开更多
This paper provides a model updating approach to detect,locate,and char-acterize damage in structural and mechanical systems by examining changes in mea-sured vibration responses.Research in vibration-based damage ide...This paper provides a model updating approach to detect,locate,and char-acterize damage in structural and mechanical systems by examining changes in mea-sured vibration responses.Research in vibration-based damage identification has been rapidly expanding over the last few decades.The basic idea behind this technology is that modal parameters(notably frequencies,mode shapes,and modal damping)are functions of the physical properties of the structure(mass,damping,and sifies).Therefore,changes in the physical properties will cause changes in the modal proper-ties which could be obtained by structural health monitoring(SHM).Updating is a process fraught with numerical difficulties.These arise from inaccuracy in the model and imprecision and lack of information in the measurements,mainly taken place in joints and critical points.The motivation for the development of this technology is.presented,methods are categorized according to various criteria such as the level of damage detection provided from vibration testing,natural frequency and mode shape readings are then obtained by using modal analysis techniques,which are used for updating structural parameters of the associated finite element model The experi-mental studies for the laboratory tested bridge model show that the proposed model.updating using ME scope technique can provide reasonable model updating results.展开更多
基金Project(10932008)supported by the National Natural Science Foundation of ChinaProject(B07050)supported by the Program of Introducing Talents of Discipline to Universities(111 Project),ChinaProject(2012GY2-26)supported by the Key Industry Program of Shaanxi Province,China
文摘Vibration tests were carried out on three types of stiffened aluminum plates with fully clamped boundaries under random base excitation. During the test, the response of the specimens was monitored using strain gauges. Based on the strain history, the accumulation of fatigue damage of the stiffened plates was estimated by means of the rainflow cycle counting technique and the Miner linear damage accumulation model in the time domain. Utilizing the change of natural frequencies, a nonlinear model was fitted for predicting the fatigue damage of plate and then the foregone failure criterion of 5% reduction in natural frequency is improved. The influence of section and spacing of the stiffeners on the vibration fatigue behavior of the aluminum plate was investigated. The results show that the fatigue life of aluminum plate increases with adding either T or L section riveted stiffeners. With the same cross-sectional area of stiffener, the T section stiffened plate shows longer fatigue life than L section stiffened plate. Meanwhile, the vibration fatigue life also shows great sensitivity to the spacing between the stiffeners.
基金The National High Technology Research and Development Program of China(863Program)(No.2006AA04Z416)
文摘An output-only modal identification method by a combination use of the peak-picking method and the cross spectrum methods are presented. Meanwhile, a novel mode shape optimum method of the deck is proposed. The methods are applied to the operational modal identification system of the Runyang Suspension Bridge, which can be used to obtain the modal parameters of the bridge from out-only data sets collected by its structural health monitoring system (SHMS). As an example, the vibration response data of the deck, cable and tower recorded during typhoon Matsa excitation are used to illustrate the program application. Some of the modal frequencies observed from deck vibration responses are also found in the vibration responses of the cable and the tower. The results show that some modal shapes of the deck are strongly coupled with the cable and the tower. By comparing the identification results from the operational modal system with those from field measurements, a good agreement between them is achieved, but some modal frequencies identified from the operational modal identification system (OMIS), such as L1 and L2, obviously decrease compared with those from the field measurements.
基金the Ministry of Construction and Transportation,Korea Highway Corporation and Hyundai E&C Co.Ltd.under Project No.R&D/970003-2.
文摘Recently,ambient vibration test(AVT)is widely used tu estimate dynamic characteristics of large civil struc- tures.Dynamic characteristics ean be affected by various envirnnmental factors such as humidity,intensity of wind,and temperature.Besides these environmental conditions,tire mass of vehicles may change the measured valnes when traffic-in- duced vibration is used as a source of AVT tor bridges.The effect of vehicle mass on dynamic characteristics is investigated through traffic-induced vibration tests on three bridges;(1)three-span suspension bridge(128m+404m+128m),(2) five-span continuous steel box girder bridge(59m+3@ 95m+59m),(3)simply supported plate girder bridge(46m). Acceleration histories of each measurement location under normal traffic are recorded for 30 minutes at field.These recor- ded histories are divided into individual vibrations and are combined into two groups aceording to the level of vibration;one by heavy vehicles such as trucks and buses and the other by light vehicles such as passenger cars.Separate processing of the two groups of signals shows that,for the middle and long-span bridges,the difference can be hardly detected,but,for the short span bridges whose mass is relatively small,the measured natural frequencies can change up to 5.4%.
文摘The identification of variations in the dynamic behavior of structures is an important subject in structural integrity assessment.Improvement and servicing of offshore platforms in the marine environment with constant changing,requires understanding the real behavior of these structures to prevent possible failure.In this work,empirical and numerical models of jacket structure are investigated.A test on experimental modal analysis is accomplished to acquire the response of structure and a mathematical model of the jacket structure is also performed.Then,based on the control theory using developed reduction system,the matrices of the platform model is calibrated and updated.The current methodology can be applied to prepare the finite element model to be more adaptable to the empirical model.Calibrated results with the proposed approach in this paper are very close to those of the actual model and also this technique leads to a reduction in the amount of calculations and expenses.The research clearly confirms that the dynamic behavior of fixed marine structures should be designed and assessed considering the calibrated analytical models for the safety of these structures.
文摘Components of mechanical product are assembled by structural joints,such as bolting,riveting,welding,etc.Structural joints introduce nonlinearity to some engineering structures,and the nonlinearity need to be modeled precisely.To meet serious quality requirements,it is necessary to detect and identify nonlinearity of mechanical products for structural optimization.Modal test to acquire a dynamic response has been applied for decades,which provides reliable results for finite element(FE)model updating.Here response control vibration test for identification of nonlinearity is presented.A nonlinear system can be regarded as linearity for particular steady state response,and classical linear analysis tool is applicable to extract modal data for particular response.First,its applicability is illustrated by some numerical simulations.Subsequently,it is implemented on experimental setup with structural joints by shaking table.The stiffness and damping function dependent of relative displacement are fitted to describe its inherent nonlinearity.The spring and damping forces are identified by harmonic balance method(HBM)to predict output response.Based on the identified results,the procedure is recommended that it allows a reliable measurement of nonlinearity with a certain accuracy.
基金sponsored by POGC (Pars Oil and Gas Company,No.132 "Investigation of Structural Health Monitoring of Steel Jacket Offshore Platforms")The financial support of POGC is gratefully acknowledged
文摘In this paper, the seismic response of a newly designed steel jacket offshore platform with a float over deck (FOD) system in the Persian Gulf was investigated through incremental dynamic analysis. Comparison of incremental dynamic analysis results for both directions of the platform shows that the lateral strength of the platform in the float over direction is less than its lateral strength in other direction. Dynamic characteristics measurement of a scale model of platform was also performed using forced vibration tests. From experimental measurement of the scaled model, it was observed that dynamic characteristic of the platform is different in the float over direction compared to the other direction. Therefore, a new offshore installed bracing system for the float over direction was proposed for improvement of seismic performance of this type of platform. Finally, the structure with the modified system was assessed using the probabilistic seismic assessment method as well as experimental measurement of its dynamic characteristics. It was observed that the proposed offshore installed bracing system improves the performance of platforms subjected to strong ground motion.
基金supported by National Natural Science Foundation of China (Grant No. 11102019)
文摘Morphing wing has attracted many research attention and effort in aircraft technology development because of its advantage in lift to draft ratio and flight performance.Morphing wing technology combines the lift and control surfaces into a seamless wing and integrates the primary structure together with the internal control system.It makes use of the wing aeroelastic deformation induced by the control surface to gain direct force control through desirable redistribution of aerodynamic forces.However some unknown mechanical parameters of the control system and complexity of the integrated structure become a main challenge for dynamic modeling of morphing wing.To solve the problem,a method of test data based modal sensitivity analysis is presented to improve the morphing wing FE model by evaluating the unknown parameters and identifying the modeling boundary conditions.An innovative seamless morphing wing with the structure integrated with a flexible trailing edge control system is presented for the investigation.An experimental model of actuation system driven by a servo motor for the morphing wing is designed and established.By performing a vibration test and the proposed modal sensitivity analysis,the unknown torsional stiffness of the servo motor and the boundary condition of the actuation mechanism model is identified and evaluated.Comparing with the test data,the average error of the first four modal frequency of the improved FE model is reduced significantly to less than 4%.To further investigate the morphing wing modeling,a wing box and then a whole morphing wing model including the skin and integrated with the trailing edge actuation system are established and tested.By using the proposed method,the FE model is improved by relaxing the constraint between the skin and actuation mechanism.The results show that the average error of the first three modal frequency of the improved FE model is reduced to less than 6%.The research results demonstrate that the presented seamless morphing wing integrated with a flexible trailing edge control surface can improve aerodynamic characteristics.By using the test data based modal sensitivity analysis method,the unknown parameter and boundary condition of the actuation model can be determined to improve the FE model.The problem in dynamic modeling of high accuracy for a morphing wing can be solved in an effective manner.
文摘In this review article,the past investigations carried out on heritage structures using Ambient Vibration Test(AVT)and Operational Modal Analysis(OMA)for system identification(determination of dynamic properties like frequency,mode shape and damping ratios)and associated applications are summarized.A total of 68 major research studies on heritage structures around the world that are available in literature are surveyed for this purpose.At first,field investigations carried out on heritage structures prior to conducting AVT are explained in detail.Next,specifications of accelerometers,location of accelerometers and optimization of accelerometer networks have been elaborated with respect to the geometry of the heritage structures.In addition to this,ambient vibration loads and data acquisition procedures are also discussed.Further,the state of art of performing OMA techniques for heritage structures is explained briefly.Furthermore,various applications of system identification for heritage structures are documented.Finally,conclusions are made towards errorless system identification of heritage structures through AVT and OMA.
基金This paper is supported by the programfor New Century Excellent Tal-ents in University (2004) .
文摘The main aim of this study is to understand the dynamic behavior of a cable-stayed bridge, using both numerical and experimental analysis. A three-dimensional finite element model for the bridge was developed for the free vibration analysis and the ambient vibration properties of the bridge were determined through field testing. The experimental and numerical results of natural frequencies and the associated mode shapes were compared, and the high accuracy between them shows that the 3D model is capable of approximately representing the dynamic behavior of the bridge and the use of ambient vibration survives in future testing of the bridge. These dynamic characteristics can be used as the basis for updating the finite element model and also for global damage detection.
基金Project(51278043)supported by National Natural Science Foundation of China
文摘The phenomenon of ground vibration amplification caused by railway traffic was found and proved. In order to study the reasons which cause the amplification, a drop-weight test was performed. Then, the model for both homogeneous and layered soil subjected to a harmonic vertical load was built. With the help of this model, displacement Green's function was calculated and the propagation laws of ground vibration responses were discussed. Results show that: 1) When applying a harmonic load on the half-space surface, the amplitude of ground vibrations attenuate with fluctuation, which is caused by the superposition of bulk and Rayleigh waves. 2) Vibration amplification can be enlarged under the conditions of embedded source and the soil layers. 3) In practice, the fluctuant attenuation should be paid attention to especially for the vibration receivers who are sensitive to single low frequencies(<10 Hz). Moreover, for the case of embedded loads, it should also be paid attention to that the receivers are located at the place where the horizontal distance is similar to embedded depth, usually 10 to 30 m for metro lines.
文摘p;Calculation;Diagnosis The vibration measuring standard for compound machinery utilized in modern industrial production will be employed for the application of detecting technologies.The vibration intensity can be obtained by selecting the detecting method to obtain the speed of mechanical vibration,and technicians can examine whether the vibrating machinery is in a proper functioning state based on the value of vibration intensity,allowing for thorough fault diagnosis.In order to provide useful diagnosis ideas for technicians,this study examines the measurement of mechanical vibration and investigates the calculating method of mechanical vibration intensity.
文摘The relation of mass, stiffness and rate of damping is obtained by using the mechanical analysis of the obstructive vibration system of two dimensions for the design of the obstructive vibration system of more freedom and the micro vibration test bed. The result of stimulational experiment indicates that the isolation of vibration of this system is satisfactory. The design method of vibration can be used as the reference to ultra precision machine tool, super micro orientation machanism and so on.
基金National Hi-Tech Research and Development Program of China (863 Program) (No. 2006AA04Z416)the National Natural Science Foundation of China Under Grant No. 50538020
文摘During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vibration-based health monitoring methods is to seek some damage indices that are sensitive to structural damage, This paper proposes an online structural health monitoring method for long-span suspension bridges using wavelet packet transform (WPT). The WPT- based method is based on the energy variations of structural ambient vibration responses decomposed using wavelet packet analysis. The main feature of this method is that the proposed wavelet packet energy spectrum (WPES) has the ability to detect structural damage from ambient vibration tests of a long-span suspension bridge. As an example application, the WPES-based health monitoring system is used on the Runyang Suspension Bridge under daily environmental conditions. The analysis reveals that changes in environmental temperature have a long-term influence on the WPES, while the effect of traffic loadings on the measured WPES of the bridge presents instantaneous changes because of the nonstationary properties of the loadings. The condition indication indices VD reflect the influences of environmental temperature on the dynamic properties of the Runyang Suspension Bridge. The field tests demonstrate that the proposed WPES-based condition indication index VD is a good candidate index for health monitoring of long-span suspension bridges under ambient excitations.
基金National Natural Science Foundation of China Under Grant No.50575101Transportation Science Research Item of Jiangsu Province Under Grant No.06Y20
文摘The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a real-coded accelerating genetic algorithm (RAGA). The objective functions are defined based on natural frequency and modal assurance criterion (MAC) metrics to evaluate the updated FEM. Two objective functions are defined to fully account for the relative errors and standard deviations of the natural frequencies and MAC between the AVT results and the updated FEM predictions. The dynamically updated FEM of the bridge can better represent its structural dynamics and serve as a baseline in long-term health monitoring, condition assessment and damage identification over the service life of the bridge .
基金supported by the National Natural Science Foundation of China (Grant No. 50909072)the New Teachers' Fund for Doctor Station, the Ministry of Education of China (Grant No. 20090032120082)the Communication Research Item for the West Area, the Ministry of Communications of China (Grant No. 2009328000084)
文摘The capacity and size of hydro-generator units are increasing with the rapid development of hydroelectric enterprises, and the vibration of the powerhouse structure has increasingly become a major problem. Field testing is an important method for research on dynamic identification and vibration mechanisms. Research on optimal sensor placement has become a very important topic due to the need to obtain effective testing information from limited test resources. To overcome inadequacies of the present methods, this paper puts forward the triaxial effective independence driving-point residue (EfI3-DPR3) method for optimal sensor placement. The Efl3-DPR3 method can incorporate both the maximum triaxial modal kinetic energy and linear independence of the triaxial target modes at the selected nodes. It was applied to the optimal placement oftriaxial sensors for vibration testing in a hydropower house, and satisfactory results were obtained. This method can provide some guidance for optimal placement of triaxial sensors of underground powerhouses.
基金Key Subject for Science Research and De-velopment Plan of Railway Ministry (No.2006G004-B)
文摘To simulate the fatigue characteristics of the pile-board structure under long-term dynamic load, using the in-situ dynamic testing system DTS-1, the forced vibration loading was repeated one million times at different cross-sections of the pile-board structure for high-speed railway. The dynamic deformation, permanent deformation and dynamic stress of main reinforcements were measured. The test results show that the dynamic responses of the pile-board structure almost did not vary with the forced vibration times under the simulated trainload. After one million times of forced vibration, the permanent deformations of the midspan section of intermediate span and midspan section of side span were 0.7 mm and 0. 6 mm, respectively, and there was no accumulative plastic deformation at the bearing section of intermediate span.
基金supported by National Natural Science Foundation of China(Project No.31660174)Guangxi Innovation-Driven Development Special Fund Project of China(Project No.AA17204087-16)through funding to NSERC Strategic Network on Innovative Wood Products and Building System,by the Natural Sciences and Engineering Research Council of Canada.
文摘Cross laminated timber(CLT)panels,which are used as load bearing plates and shear panels in timber structures,can serve as roofs,walls and floors.Since timber is construction material with relatively less stiffness,the design of such structures is often driven by serviceability criteria,such as deflection and vibration.Therefore,accurate vibration and elastic properties are vital for engineered CLT products.The objective of this research is to explore a method to determine the natural frequencies of orthotropic wood plates efficiently and fast.The method was developed based on vibration signal processing by wavelet to acquire the effective sample data,and a model developed by artificial neural network(ANN)to achieve the prediction of nature frequencies.First,experiments were performed to obtain vibration signals of single-layer plates.The vibration signals were then processed by wavelet packet transform to extract the eigenvectors,which served as the samples to train the ANN model.The trained model was employed to predict three nature frequencies of other test specimens.The results showed that the proposed method can produce predicted frequencies fast and efficiently within 10%of the measured values.
基金This project is supported by Aeronautics Foundation (No. 1152059), Civil Aviation Foundation (No.1007-272) the 9-th Five Plan of the Aeronautical Industrial Corporation (No.62.2.2.1), China.
文摘Conventional modal parameter identifications are usually based on frequencyresponse functions, which require measurements of both the input force and the resulting response.However, in many cases, only response data are available while the actual excitations (such aswind/wave load) are not measurable. Modal parameters estimation must base itself on response-onlydata. Over the past years, many time-domain modal parameter identification techniques fromoutput-only are proposed. A poly-reference frequency-domain modal identification scheme onresponse-only is presented. It is based on coupling the cross-correlation theory with conventionalfrequency-domain modal parameter extraction. An experiment using an airplane model is performed toverify the proposed method.
基金This study was financially supported by the Guangdong Provincial Key Project R&D Program(Grant No.2019B090922001)the Guangdong Provincial Postdoctoral Research Center Construction Project(Grant No.[2020]No.122).
文摘The complex terrain environment in the hilly land directly affects the operational reliability of agricultural robots.In order to study the impact of road irregularity on walking chassis vibration,the 3CYLZ-750 remote-controlled weeding machine which is applied to orchards was taken as the object of study,and the rear roller was selected as the object of observation to reveal the rules under which the vibration of the track chassis changes as there is a sudden change in road surface elevation.A column-type test-to-pass method based on unit excitation was proposed in this study.The excitation behavior and action process were analyzed by category.A critical acceleration prediction model was built and verified by virtual simulation and hard road surface excitation testing.The results showed that at the forward velocity of 0-2.5 km/h and exciter height of 20-100 mm,the vertical vibration acceleration of the target roller was significantly affected by Track Contact Point Centrifugal Acceleration(TCPCA).As TCPCA increased,the change rate of vertical vibration acceleration decreased,reaching a minimum of[−13.8,28.8];as TCPCA decreased,the vertical vibration acceleration tended to increase positively at a maximum variation range of[−13.3,42.2].The measured and simulated macroscopic change rules were consistent with the theoretical analysis,further verifying the correctness of variable extraction,and providing a research basis for the accurate modification and improvement of the model.The research conclusions can lay a theoretical foundation for analyzing the walking reliability of the track chassis,and provide a design basis and technical support for the development of a tracked agricultural robot chassis for the hilly land in the future.
文摘This paper provides a model updating approach to detect,locate,and char-acterize damage in structural and mechanical systems by examining changes in mea-sured vibration responses.Research in vibration-based damage identification has been rapidly expanding over the last few decades.The basic idea behind this technology is that modal parameters(notably frequencies,mode shapes,and modal damping)are functions of the physical properties of the structure(mass,damping,and sifies).Therefore,changes in the physical properties will cause changes in the modal proper-ties which could be obtained by structural health monitoring(SHM).Updating is a process fraught with numerical difficulties.These arise from inaccuracy in the model and imprecision and lack of information in the measurements,mainly taken place in joints and critical points.The motivation for the development of this technology is.presented,methods are categorized according to various criteria such as the level of damage detection provided from vibration testing,natural frequency and mode shape readings are then obtained by using modal analysis techniques,which are used for updating structural parameters of the associated finite element model The experi-mental studies for the laboratory tested bridge model show that the proposed model.updating using ME scope technique can provide reasonable model updating results.