期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Free vibration analysis of functionally graded material beams based on Levinson beam theory 被引量:6
1
作者 Xuan WANG Shirong LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第7期861-878,共18页
Free vibration response of functionally graded material (FGM) beams is studied based on the Levinson beam theory (LBT). Equations of motion of an FGM beam are derived by directly integrating the stress-form equati... Free vibration response of functionally graded material (FGM) beams is studied based on the Levinson beam theory (LBT). Equations of motion of an FGM beam are derived by directly integrating the stress-form equations of elasticity along the beam depth with the inertial resultant forces related to the included coupling and higherorder shear strain. Assuming harmonic response, governing equations of the free vibration of the FGM beam are reduced to a standard system of second-order ordinary differential equations associated with boundary conditions in terms of shape functions related to axial and transverse displacements and the rotational angle. By a shooting method to solve the two-point boundary value problem of the three coupled ordinary differential equations, free vibration response of thick FGM beams is obtained numerically. Particularly, for a beam with simply supported edges, the natural frequency of an FGM Levinson beam is analytically derived in terms of the natural frequency of a corresponding homogenous Euler-Bernoulli beam. As the material properties are assumed to vary through the depth according to the power-law functions, the numerical results of frequencies are presented to examine the effects of the material gradient parameter, the length-to-depth ratio, and the boundary conditions on the vibration response. 展开更多
关键词 functionally graded material (FGM) beam Levinson beam theory (LBT) free vibration shooting method natural frequency
下载PDF
Nonlinear vibration of embedded single-walled carbon nanotube with geometrical imperfection under harmonic load based on nonlocal Timoshenko beam theory 被引量:1
2
作者 王博 邓子辰 张凯 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第3期269-280,共12页
Based on the nonlocal continuum theory, the nonlinear vibration of an embedded single-walled carbon nanotube (SWCNT) subjected to a harmonic load is in- vestigated. In the present study, the SWCNT is assumed to be a... Based on the nonlocal continuum theory, the nonlinear vibration of an embedded single-walled carbon nanotube (SWCNT) subjected to a harmonic load is in- vestigated. In the present study, the SWCNT is assumed to be a curved beam, which is unlike previous similar work. Firstly, the governing equations of motion are derived by the Hamilton principle, meanwhile, the Galerkin approach is carried out to convert the nonlinear integral-differential equation into a second-order nonlinear ordinary differ- ential equation. Then, the precise integration method based on the local linearzation is appropriately designed for solving the above dynamic equations. Besides, the numerical example is presented, the effects of the nonlocal parameters, the elastic medium constants, the waviness ratios, and the material lengths on the dynamic response are analyzed. The results show that the above mentioned effects have influences on the dynamic behavior of the SWCNT. 展开更多
关键词 embedded curved carbon nanotube nonlocal Timoshenko beam theory nonlinear vibration harmonic load precise integrator method
下载PDF
An Elastic Absorber Theory for a Thin Fabric Sheet
3
作者 张新安 《Journal of Donghua University(English Edition)》 EI CAS 2007年第3期375-380,共6页
The current sound absorption theory which is based on Rayleigh model believes that fibrous material absorb sound by the fluid frictional energy dissipation between the air and the solid fibers. However, Rayleigh model... The current sound absorption theory which is based on Rayleigh model believes that fibrous material absorb sound by the fluid frictional energy dissipation between the air and the solid fibers. However, Rayleigh model is only useful for a quanlitative understanding of effects In a porous material but not for calculation of the acoustical properties of real absorbent. In this paper, a new vibration sound absorption theory which is totally different from classical theory was put forward. The specific acoustic impedance of fiber layers have been derived from the membrane vibration equation and the sound absorption coefficient calculated agree with test results. The new theory can explaIn the phenomenon that thIn fiber layers exhibit less sound absorption coefficient when it was as the cover fabric of sound absorber, but it is more efficient to sound absorption when it was hang as the curtains or have back cavity behind it. 展开更多
关键词 membrane vibration theory specific acousticimpedance fibrous material sound absorption coefficient
下载PDF
Forced vibration analysis of nano-composite rotating pressurized microbeam reinforced by CNTs based on MCST with temperature-variable material properties 被引量:1
4
作者 R.Rostami M.Mohammadimehr +1 位作者 M.Ghannad A.Jalali 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2018年第2期97-108,共12页
In this study, free and forced vibration analysis of nano-composite rotating pressurized microbeam reinforced by carbon nanotubes (CNTs) under magnetic field based on modify couple stress theory (MCST) with temper... In this study, free and forced vibration analysis of nano-composite rotating pressurized microbeam reinforced by carbon nanotubes (CNTs) under magnetic field based on modify couple stress theory (MCST) with temperature-variable material propertiesis presented. Also, the boundary conditions at two ends of nano-composite rotating pressurized microbeam reinforced by CNTs are considered as simply supported. The governing equations are obtained based on the Hamilton's principle and then computed these equations by using Navier's solution. The magnetic field is inserted in the thickness direction of the nano-composite microbeam. The effects of various parameters such as angular velocity, temperature changes, and pressure between of the inside and outside, the magnetic field, material length scale parameter, and volume fraction of nanocomposite microbeam on the natural frequency and response systemare studied. The results show that with increasing volume fraction of nano-composite microbeam, thickness, material length scale parameter, and magnetic fields, the natural frequency increases. The results of this research can be used for optimization of micro-structures and manufacturing sensors, displacement fluid, and drug delivery. 展开更多
关键词 Forced vibration analysis Nano-composite rotating pressurized microbeam Carbon nanotubes Modify couple stress theory Temperature-variable material properties
下载PDF
Non-linear theory of vibration and aesthetics of raga music
5
作者 S.CHAKRABARTY 《Chinese Journal of Acoustics》 1992年第2期179-183,共5页
The non-linear theory of vibration has recently been applied to a number of problems in physics and was found to give many interesting results which were absent in the case of linear vibration. It is natural to think ... The non-linear theory of vibration has recently been applied to a number of problems in physics and was found to give many interesting results which were absent in the case of linear vibration. It is natural to think of the outcome of application of non-linear theory to raga music, a topic which has hitherto been unexplored. It has been found that a new realm of musical idea is obtained if one considers the effects of non-linearity in physics on the understanding of the aesthetics and beauty in raga music when two notes are sounded simultaneously. 展开更多
关键词 Non-linear theory of vibration and aesthetics of raga music
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部