期刊文献+
共找到198,602篇文章
< 1 2 250 >
每页显示 20 50 100
Transmission and Dissipation of Vibration in a Dynamic Vibration Absorber-Roller System Based on Particle Damping Technology
1
作者 Dongping He Huidong Xu +1 位作者 Ming Wang Tao Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第5期288-306,共19页
The research of rolling mill vibration theory has always been a scientific problem in the field of rolling forming,which is very important to the quality of sheet metal and the stable operation of equipment.The essenc... The research of rolling mill vibration theory has always been a scientific problem in the field of rolling forming,which is very important to the quality of sheet metal and the stable operation of equipment.The essence of rolling mill vibration is the transfer of energy,which is generated from inside and outside.Based on particle damping technology,a dynamic vibration absorber(DVA)is proposed to control the vertical vibration of roll in the rolling process from the point of energy transfer and dissipation.A nonlinear vibration equation for the DVA-roller system is solved by the incremental harmonic balance method.Based on the obtained solutions,the effects of the basic parameters of the DVA on the properties of vibration transmission are investigated by using the power flow method,which provides theoretical guidance for the selection of the basic parameters of the DVA.Furthermore,the influence of the parameters of the particles on the overall dissipation of energy of the particle group is analyzed in a more systematic way,which provides a reference for the selection of the material and diameter and other parameters of the particles in the practical application of the DVA.The effect of particle parameters on roll amplitude inhibition is studied by experiments.The experimental results agree with the theoretical analysis,which proves the correctness of the theoretical analysis and the feasibility of the particle damping absorber.This research proposes a particle damping absorber to absorb and dissipate the energy transfer in rolling process,which provides a new idea for nonlinear dynamic analysis and stability control of rolling mills,and has important guiding significance for practical production. 展开更多
关键词 Rolling mill vibration Dynamic vibration absorber Particle damping Power flow Energy dissipation
下载PDF
Nanostructured ZnO/BiVO_(4)I-scheme heterojunctions for piezocatalytic degradation of organic dyes via harvesting ultrasonic vibration energy
2
作者 Yiling Li Xiaoyao Yu +2 位作者 Yingjie Zhou Yao Lin Ying Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期488-497,共10页
BiVO_(4)porous spheres modified by ZnO were designed and synthesized using a facile two-step method.The resulting ZnO/BiVO_(4)composite catalysts have shown remarkable efficiency as piezoelectric catalysts for degradi... BiVO_(4)porous spheres modified by ZnO were designed and synthesized using a facile two-step method.The resulting ZnO/BiVO_(4)composite catalysts have shown remarkable efficiency as piezoelectric catalysts for degrading Rhodamine B(RhB)unde mechanical vibrations,they exhibit superior activity compared to pure ZnO.The 40wt%ZnO/BiVO_(4)heterojunction composite displayed the highest activity,along with good stability and recyclability.The enhanced piezoelectric catalytic activity can be attributed to the form ation of an I-scheme heterojunction structure,which can effectively inhibit the electron-hole recombination.Furthermore,hole(h+)and superoxide radical(·O_(2)^(-))are proved to be the primary active species.Therefore,ZnO/BiVO_(4)stands as an efficient and stable piezoelectric catalyst with broad potential application in the field of environmental water pollution treatment. 展开更多
关键词 piezoelectric catalytic HETEROJUNCTION dye degradation ultrasonic vibration
下载PDF
Dynamic Interaction Analysis of Coupled Axial-Torsional-Lateral Mechanical Vibrations in Rotary Drilling Systems
3
作者 Sabrina Meddah Sid Ahmed Tadjer +3 位作者 Abdelhakim Idir Kong Fah Tee Mohamed Zinelabidine Doghmane Madjid Kidouche 《Structural Durability & Health Monitoring》 EI 2025年第1期77-103,共27页
Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp... Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry. 展开更多
关键词 Rotary drilling systems mechanical vibrations structural durability dynamic interaction analysis field data analysis
下载PDF
Vibration safety assessment and parameter analysis of buried oil pipelines based on vibration isolation holes under strong surface impact
4
作者 Wang Guobo Mei Hua +4 位作者 Wang Jianning He Wei Yin Yao Zhai Yuxin Zuo Pengfei 《Earthquake Engineering and Engineering Vibration》 2025年第1期69-82,共14页
Strong surface impact will produce strong vibration,which will pose a threat to the safety of nearby buried pipelines and other important lifeline projects.Based on the verified numerical method,a comprehensive numeri... Strong surface impact will produce strong vibration,which will pose a threat to the safety of nearby buried pipelines and other important lifeline projects.Based on the verified numerical method,a comprehensive numerical parameter analysis is conducted on the key influencing factors of the vibration isolation hole(VIH),which include hole diameter,hole net spacing,hole depth,hole number,hole arrangement,and soil parameters.The results indicate that a smaller ratio of net spacing to hole diameter,the deeper the hole,the multi-row hole,the hole adoption of staggered arrangements,and better site soil conditions can enhance the efficiency of the VIH barrier.The average maximum vibration reduction efficiency within the vibration isolation area can reach 42.2%.The vibration safety of adjacent oil pipelines during a dynamic compaction projection was evaluated according to existing standards,and the measurement of the VIH was recommended to reduce excessive vibration.The single-row vibration isolation scheme and three-row staggered arrangement with the same hole parameters are suggested according to different cases.The research findings can serve as a reference for the vibration safety analysis,assessment,and control of adjacent underground facilities under the influence of strong surface impact loads. 展开更多
关键词 vibration isolation hole buried oil pipeline strong surface impact vibration velocity vibration safety assessment
下载PDF
Vibration response of Euler-Bernoulli-damped beam with appendages subjected to a moving mass
5
作者 Raed AlSaleh Ayman Nasir Nour Atieh 《Earthquake Engineering and Engineering Vibration》 2025年第1期223-234,共12页
This paper addresses the problem of a viscoelastic Euler-Bernoulli beam under the influence of a constant velocity moving mass and different types of appendages.Four types of boundary conditions are considered:pinned-... This paper addresses the problem of a viscoelastic Euler-Bernoulli beam under the influence of a constant velocity moving mass and different types of appendages.Four types of boundary conditions are considered:pinned-pinned,fixed-pinned,fixed-free(or cantilever),and fixed-fixed.Appendages considered include lumped masses,dampers,and springs.The modal decomposition method is employed to derive the equation of motion of the beam,for which an analytical closed-form expression of the dynamic vibration response is generated.The proposed method enables the study of the effect of a single appendage or a combination of the three types of appendages on the non-dimensional dynamic response of the beam.Numerical examples are presented to illustrate the effects of these appendages and compare them to the reference cases of a beam with no appendages.The results demonstrate the importance of considering these parameters in the design of structures.The proposed method is compared to other techniques in the literature and found to be advantageous due to its direct approach.The method also offers a versatile tool for investigating various configurations,aiding in engineering design and structural analysis for which establishing a precise prediction of beam vibrations is crucial. 展开更多
关键词 Euler-Bernoulli beam modal decomposition vibration response APPENDAGES
下载PDF
Analysis of vibration response characteristics of subway station and superstructure with hard combination
6
作者 Jia Jinglong Xu Weiping +1 位作者 Liu Xu Wei Yong 《Earthquake Engineering and Engineering Vibration》 2025年第1期271-281,共11页
The vibration response and noise caused by subway trains can affect the safety and comfort of superstructures.To study the dynamic response characteristics of subway stations and superstructures under train loads with... The vibration response and noise caused by subway trains can affect the safety and comfort of superstructures.To study the dynamic response characteristics of subway stations and superstructures under train loads with a hard combination,a numerical model is developed in this study.The indoor model test verified the accuracy of the numerical model.The influence laws of different hard combinations,train operating speeds and modes were studied and evaluated accordingly.The results show that the frequency corresponding to the peak vibration acceleration level of each floor of the superstructure property is concentrated at 10–20 Hz.The vibration response decreases in the high-frequency parts and increases in the lowfrequency parts with increasing distance from the source.Furthermore,the factors,such as train operating speed,operating mode,and hard combination type,will affect the vibration of the superstructure.The vibration response under the reversible operation of the train is greater than that of the unidirectional operation.The operating speed of the train is proportional to its vibration response.The vibration amplification area appears between the middle and the top of the superstructure at a higher train speed.Its vibration acceleration level will exceed the limit value of relevant regulations,and vibration-damping measures are required.Within the scope of application,this study provides some suggestions for constructing subway stations and superstructures. 展开更多
关键词 subway station SUPERSTRUCTURE vibration response hard combination
下载PDF
Wind Turbine Composite Blades:A Critical Review of Aeroelastic Modeling and Vibration Control
7
作者 Tingrui Liu Qinghu Cui Dan Xu 《Fluid Dynamics & Materials Processing》 2025年第1期1-36,共36页
With the gradual increase in the size and flexibility of composite blades in large wind turbines,problems related toaeroelastic instability and blade vibration are becoming increasingly more important.Given their impa... With the gradual increase in the size and flexibility of composite blades in large wind turbines,problems related toaeroelastic instability and blade vibration are becoming increasingly more important.Given their impact on thelifespan of wind turbines,these subjects have become important topics in turbine blade design.In this article,firstaspects related to the aeroelastic(structural and aerodynamic)modeling of large wind turbine blades are summarized.Then,two main methods for blade vibration control are outlined(passive control and active control),including the case of composite blades.Some improvement schemes are proposed accordingly,with a specialfocus on the industry’s outstanding suppression scheme for stall-induced nonlinear flutter and a new high-frequencymicro-vibration control scheme.Finally,future research directions are indicated based on existingresearch. 展开更多
关键词 Aeroelastic instability vibration control composite blade stall-induced nonlinear flutter high-frequency microvibration
下载PDF
Combining machine learning algorithms with traditional methods for resolving the atomic-scale dynamic structure of monolayer MoS_(2) in high-resolution transmission electron microscopy
8
作者 Yu Meng Shuya Wang +5 位作者 Xibiao Ren Han Xue Xuejun Yue Chuanhong Jin Shanggang Lin Fang Lin 《Chinese Physics B》 2025年第1期162-170,共9页
High-resolution transmission electron microscopy(HRTEM)promises rapid atomic-scale dynamic structure imaging.Yet,the precision limitations of aberration parameters and the challenge of eliminating aberrations in Cs-co... High-resolution transmission electron microscopy(HRTEM)promises rapid atomic-scale dynamic structure imaging.Yet,the precision limitations of aberration parameters and the challenge of eliminating aberrations in Cs-corrected transmission electron microscopy constrain resolution.A machine learning algorithm is developed to determine the aberration parameters with higher precision from small,lattice-periodic crystal images.The proposed algorithm is then validated with simulated HRTEM images of graphene and applied to the experimental images of a molybdenum disulfide(MoS_(2))monolayer with 25 variables(14 aberrations)resolved in wide ranges.Using these measured parameters,the phases of the exit-wave functions are reconstructed for each image in a focal series of MoS_(2)monolayers.The images were acquired due to the unexpected movement of the specimen holder.Four-dimensional data extraction reveals time-varying atomic structures and ripple.In particular,the atomic evolution of the sulfur-vacancy point and line defects,as well as the edge structure near the amorphous,is visualized as the resolution has been improved from about 1.75?to 0.9 A.This method can help salvage important transmission electron microscope images and is beneficial for the images obtained from electron microscopes with average stability. 展开更多
关键词 aberration measurement high-resolution transmission electron microscopy feature-extraction networks exit-wave reconstruction monolayer MoS_(2)
下载PDF
Analysis of vibration and frequency transmission of high speed EMU with flexible model 被引量:5
9
作者 Zun-Song Ren Guang Yang +1 位作者 Shan-Shan Wang Shou-Guang Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第6期876-883,共8页
When the operation speed of the high-speed train increases and the weight of the carbody becomes lighter,not only does the sensitivity of the wheel/rail contact get higher,but also the vibration frequency range of the... When the operation speed of the high-speed train increases and the weight of the carbody becomes lighter,not only does the sensitivity of the wheel/rail contact get higher,but also the vibration frequency range of the vehicle system gets enlarged and more frequencies are transmitted from the wheelset to the carbody.It is important to investigate the vibration characteristics and the dynamic frequency transmission from the wheel/rail interface to the carbody of the high-speed electric multi-uint(EMU).An elastic highspeed vehicle dynamics model is established in which the carbody,bogieframes,and wheelsets are all dealt with as flexible body.A rigid high-speed vehicle dynamics model is set up to compare with the simulation results of the elastic model.In the rigid vehicle model,the carbody,bogieframes and wheelsets are treated as rigid component while the suspension and structure parameters are the same as used in the elastic model.The dynamic characteristic of the elastic high speed vehicle is investigated in time and frequency domains and the di ff erence of the acceleration,frequency distribution and transmission of the two types of models are presented.The results show that the spectrum power density of the vehicle decreases from the wheelset to the carbody and the acceleration transmission ratio is approximately from 1%to 10%for each suspension system.The frequency of the wheelset rotation is evident in the vibration of the flexible model and is transmitted from the wheelset to the bogieframe and to thecarbody.The results of the flexible model are more reasonable than that of the rigid model.A field test data of the high speed train are presented to verify the simulation results.It shows that the simulation results are coincident with the field test data. 展开更多
关键词 High-speed EMU vibration transmission Flexible model ACCELERATION Power spectrum density
下载PDF
Vibration Characteristics and Power Transmission of Coupled Rectangular Plates with Elastic Coupling Edge and Boundary Restraints 被引量:3
10
作者 CHEN Yuehua JIN Guoyong DU Jingtao LIU Zhigang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第2期262-276,共15页
Coupled-plate structures are widely used in the practical engineering such as aeronautical,civil and naval engineering etc.Limited works can be found on the vibration of the coupled-plate structure due to the increase... Coupled-plate structures are widely used in the practical engineering such as aeronautical,civil and naval engineering etc.Limited works can be found on the vibration of the coupled-plate structure due to the increased mathematical complexity compared with the single plate structure.In order to study analytically the vibration characteristics and power transmission of the coupled-plate structure,an analytical model consisting of three coupled plates elastically restrained along boundary edges and elastically coupled with arbitrary angle is considered,in which four groups of springs are distributed consistently along each edge of the model to simulate the transverse shearing forces,bending moments,in-plane longitudinal forces and in-plane shearing forces separately.With elastic coupling condition and general boundary condition of both flexural and in-plane vibrations taken into account by setting the stiffness of corresponding springs,the double Fourier series solution to the dynamic response of the structure was obtained by employing the Rayleigh-Ritz method.In order to validate the model,the natural frequency and velocity response of the model are firstly checked against results published in literatures and the ANSYS data,and good agreement was observed.Then,numerical simulation of the effects of several relevant parameters on the vibration characteristics and power transmission of the coupled structure were performed,including boundary conditions,coupling conditions,coupling angle,and location of the external forces.Vibration and energy transmission behaviors were analyzed numerically.The results show that the power transmission can be significantly influenced by the boundary restraints and the location of excitation.When the excitation is located at the central symmetry point of the model,the energy flow shows a symmetrical distribution.Once the location deviates from the central symmetry point,the power circumfluence occurs and the vortex energy field is formed at high frequency. 展开更多
关键词 vibration power transmission coupled-plate structure elastic restraints
下载PDF
Super-harmonic resonance of gear transmission system under stick-slip vibration in high-speed train 被引量:4
11
作者 HUANG Guan-hua XU Si-si +1 位作者 ZHANG Wei-hua YANG Cai-jin 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期726-735,共10页
This work deals with super-harmonic responses and the stabilities of a gear transmission system of a high-speed train under the stick-slip oscillation of the wheel-set.The dynamic model of the system is developed with... This work deals with super-harmonic responses and the stabilities of a gear transmission system of a high-speed train under the stick-slip oscillation of the wheel-set.The dynamic model of the system is developed with consideration on the factors including the time-varying system stiffness,the transmission error,the tooth backlash and the self-excited excitation of the wheel-set.The frequency-response equation of the system at super-harmonic resonance is obtained by the multiple scales method,and the stabilities of the system are analyzed using the perturbation theory.Complex nonlinear behaviors of the system including multi-valued solutions,jump phenomenon,hardening stiffness are found.The effects of the equivalent damping and the loads of the system under the stick-slip oscillation are analyzed.It shows that the change of the load can obviously influence the resonance frequency of the system and have little effect on the steady-state response amplitude of the system.The damping of the system has a negative effect,opposite to the load.The synthetic damping of the system composed of meshing damping and equivalent damping may be less than zero when the wheel-set has a large slippage,and the system loses its stability owing to the Hopf bifurcation.Analytical results are validated by numerical simulations. 展开更多
关键词 stick-slip vibration super-harmonic resonance Hopf bifurcation gear transmission system high-speed train
下载PDF
CHARACTERISTICS OF ELECTROMECHANICAL COUPLING SELF-SYNCHRONIZATION OF A MULTI-MOTOR VIBRATION TRANSMISSION SYSTEM 被引量:8
12
作者 Xiong Wanli,Duan Zhishan (School of Mechanical and Electrical Engineering, Xi’ an University of Architecture and Technology) Wen Bangchun (Northeastern University) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2001年第3期275-278,共4页
Multi-motor vibratory transmission systems have been wide used in large vibratory machines, and four-motor linear vibratory machine is one typical equipment of them. Under non-forcible synchronization condition zero... Multi-motor vibratory transmission systems have been wide used in large vibratory machines, and four-motor linear vibratory machine is one typical equipment of them. Under non-forcible synchronization condition zero-phase synchronization of the machine is non-stationary and it-phase synchronization is stable. Under half-forcible synchronization condition in which only one motor is controlled being synchronous to another, only lag synchronization near zero-phase synchronization can be realized. Both of the characteristics have never been revealed with classical theory quantitatively. The problem is solved by means of establishing an electromechanical coupling mathematical model of the system and numerical analysis of the starting processes. 展开更多
关键词 Vibratory transmission Electromechanical coupling SELF-SYNCHRONIZATION
下载PDF
STUDY ON THE VIBRATION CHARACTERISTIC OF THE METAL PUSHING BELT CONTINUOUSLY VARIABLE TRANSMISSION 被引量:1
13
作者 Yang Wei Qin Datong Li Yilong Zhu Caichao The State Key Laboratory of Mechanical Transmission,Chongqing University 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2001年第2期175-178,183,共5页
The solid and finite element model of metal pushing type continuously variable transmission are established at speed ratio of i =0 5 and i=2 0. In order to solve the problem of the complicated of structure,the... The solid and finite element model of metal pushing type continuously variable transmission are established at speed ratio of i =0 5 and i=2 0. In order to solve the problem of the complicated of structure,the node node rod discrete finite element model is put forward and the whole system is simplified and established.The natural frequency and mode shape of system are solved by iterative Lanczos reduce method for sensitivity analysis in finite element model.The new method and the result can be used to improve the smoothness of the variable transmission system and to propose the theory for reducing noise at operation. 展开更多
关键词 Continuously variable transmission Finite element model Modal analysis vibration characteristic
下载PDF
Application of Lead Viscoelastic Dampers to Wind Vibration Control on Big-Span Power Transmission Tower 被引量:1
14
作者 梁政平 李黎 +1 位作者 尹鹏 段松涛 《Journal of Southwest Jiaotong University(English Edition)》 2008年第4期320-328,共9页
To study the wind vibration response of power transmission tower, the lead viscoelastic dampers (LVDs) were applied to a cup tower. With time history analysis method, the displacement, velocity, acceleration and for... To study the wind vibration response of power transmission tower, the lead viscoelastic dampers (LVDs) were applied to a cup tower. With time history analysis method, the displacement, velocity, acceleration and force response of the tower was calculated and analyzed. The results show that the control effect of lead viscoelastic dampers is very good, and the damping ratio can reach 20% or more when they are applied to the tower head. 展开更多
关键词 transmission tower Lead viscoelastic damper Wind-induced vibration control
下载PDF
Wind-induced vibration control of long-span power transmission towers 被引量:1
15
作者 尹鹏 《Journal of Chongqing University》 CAS 2009年第2期112-124,共13页
We investigated wind-induced vibration control of long-span power transmission towers based on a case study of the Jingdongnan-Nanyang-Jingmen 1 000 kV transmission line project in P. R. China. The height of the cup t... We investigated wind-induced vibration control of long-span power transmission towers based on a case study of the Jingdongnan-Nanyang-Jingmen 1 000 kV transmission line project in P. R. China. The height of the cup tower is 181 m with a ground elevation of 47 m, which makes it a super flexible and wind-sensitive structure. Therefore, we should analyze the wind- resistant capacity of the system. We simulated applicable transverse fluctuating wind velocity field, developed a lead-rubber damper (LRD) for controlling wind-induced vibration of long-span transmission towers, deduced LRD calculation model parameter, and researched the best layout scheme and installation method of LRD. To calculate the wind-induced response of tower-line coupling system in seven layout schemes, we used the time history analysis method, and obtained the efficiencies of wind-induced vibration control. LRD deformation research proved that the damp of all LRDs was efficient under the designed wind velocity when they were laid along the edge of tower heads. We studied the controlling efficiency resulting fTom only applying stiffness to the tower polos where the dampers used to be laid under the designed wind velocity. The results show that the controlling efficiency was not ideal when the stiffness is increased on the poles only. Therefore, LRD should conlxibute to both the stiffness and damp of a structure to effectively reduce the dynamic response of a tower-line coupling system under strong winds. We also discussed the controlling efficiency of LRD under static winds. The results show that there was little difference between displacements derived by the finite clement time history method and those obtained by static wind method conducted by a design institute. This means the simulation on space relevant wind velocity field was accurate and reasonable. 展开更多
关键词 transmission towers lead-rubber damper wind-induced vibration control
下载PDF
Effect of Tooth Profile Modification on Vibration of Power Split Gear Transmission System 被引量:2
16
作者 Jincheng Dong Sanmin Wang +1 位作者 Jiashun Guo He Lin 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2016年第3期61-68,共8页
Based on Newton ' s second law,the bend-torsion-shaft coupling nonlinear dynamic model and equations of power split gear transmission system are established.According to the principle of tooth profile modification... Based on Newton ' s second law,the bend-torsion-shaft coupling nonlinear dynamic model and equations of power split gear transmission system are established.According to the principle of tooth profile modification,the tooth profile modification is considered as time-varying gear backlash function acting along the line of action.Then the dynamic functions are solved by using Runge-Kutta numerical method.After analyzing the effect of tooth profile modification quantity( TPMQ) and relative tooth profile modification length( TPML) to the nonlinear dynamic characteristics of power split gear transmission,the following conclusions are drawn:1 The TPMQ of a certain stage transmission affects the vibration of its own stage more significantly than the other stage,and the coupling effect between two stages can be ignored usually in the modification design;2 If the first stage TPMLs are less than 0.3,the influence of the first stage TPMLs to the first stage transmission vibration is much more greatly than the influence of the second stage TPMLs to the first stage transmission vibration,or else both the first and second stage TPMLs affect the first stage transmission vibration largely.The same is true for the second stage TPMLs,and the cutoff value is 0.2;3 The TPMQ affects the vibration of power split gear transmission system more principally than the TPML,and should be top-priority in the modification design. 展开更多
关键词 power SPLIT GEAR transmission system TOOTH profile MODIFICATION nonlinear dynamic characteristics TIME-VARYING GEAR BACKLASH function
下载PDF
Research on two-dimensional fluid vibration axial transmission path model of axial piston pump
17
作者 Quan Lingxiao Bai Ruxia +2 位作者 Zhang Qiwei Liu Song Lu Yueliang 《High Technology Letters》 EI CAS 2019年第1期48-56,共9页
High speed and high pressure can enhance the vibration of axial piston pump. A fluid vibration transmission law of axial piston pump is studied in this paper. According to harmonic response analysis results, a transmi... High speed and high pressure can enhance the vibration of axial piston pump. A fluid vibration transmission law of axial piston pump is studied in this paper. According to harmonic response analysis results, a transmission path analysis is used to establish a two-dimensional fluid vibration transmission path model in the vertical plane, which has characteristics of multi excitation sources, multi-path and multi-receptors. Model parameters are obtained by experimental and numerical analysis. Matlab is used to solve the model, and acceleration vibration response of three shells is got. To reduce the effect of mechanical vibration, the surface acceleration of pump is tested under low speed condition. Results show that the model can accurately reveal transmission law of fluid vibration and the accuracy is more than 90%. The research lays a foundation for exploring vibration transmission law and vibration control. 展开更多
关键词 axial piston pump fluid vibration vibration transmission path vibration response
下载PDF
Vibration Severity Monitoring and Evaluation of Armored Vehicle Transmission
18
作者 樊新海 王传菲 +1 位作者 安钢 王战军 《Defence Technology(防务技术)》 SCIE EI CAS 2009年第4期256-260,共5页
Vibration monitoring and vibration severity evaluation of armored vehicle transmission are realized by additional sensors. An algorithm of vibration severity in frequency domain is presented. The algorithm has powerfu... Vibration monitoring and vibration severity evaluation of armored vehicle transmission are realized by additional sensors. An algorithm of vibration severity in frequency domain is presented. The algorithm has powerful applicability for signal type and flexible selectivity for frequency range,and avoids the processing of signal conversion used calculus and filtering compared to the algorithm of vibration severity in time domain. An applied example is given in company with attentive proceedings and measures for improving evaluation effect. 展开更多
关键词 MECHANICS armored vehicle transmission condition monitoring vibration standard vibration severity
下载PDF
Characteristics of ultrasonic vibration transmission in bonding process 被引量:1
19
作者 李军辉 闵四宗 +1 位作者 韩雷 钟掘 《Journal of Central South University of Technology》 EI 2005年第5期567-571,共5页
The transmitting models of ultrasonic vibration in ultrasonic transducer and capillary were presented according to the propagating mechanism of ultrasonic wave in elastic body. The coupling characteristics of ultrason... The transmitting models of ultrasonic vibration in ultrasonic transducer and capillary were presented according to the propagating mechanism of ultrasonic wave in elastic body. The coupling characteristics of ultrasonic longitudinal-complex transverse vibration system were simulated by Matlab software. The ultrasonic vibration displacement and the velocity of high frequency were measured by using the PSV-400-M2(1.5MHz) laser Doppler vibrometer. The vibration locus shapes driven by the same frequency and different frequencies were tested by using GDS-820S dual channel digital oscilloscope. The microstructures at bonding interface were observed by means of KYKY2800 scanning electron microscope. The results show that ultrasonic vibration displacement or velocity and energy density increase with the decrease of section area in the transmitting process. The vibration locus shapes driven simultaneously by the same frequency and different frequencies are elliptical (or circular) loci and rectangular (or square) loci, respectively. And the characteristics at bonding interface are improved by coupling loci. 展开更多
关键词 ultrasonic bonding coupling vibration TRANSDUCER ultrasonic longitudinal-complex transverse system
下载PDF
Vibration and sound transmission loss characteristics of porous foam functionally graded sandwich panels in thermal environment 被引量:3
20
作者 Wenhao YUAN Haitao LIAO +1 位作者 Ruxin GAO Fenglian LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第6期897-916,共20页
This study investigates the vibration and acoustic properties of porous foam functionally graded(FG)plates under the influence of the temperature field.The dynamics equations of the system are established based on Ham... This study investigates the vibration and acoustic properties of porous foam functionally graded(FG)plates under the influence of the temperature field.The dynamics equations of the system are established based on Hamilton's principle by using the higher-order shear deformation theory under the linear displacement-strain assumption.The displacement shape function is assumed according to the four-sided simply-supported(SSSS)boundary condition,and the characteristic equations of the system are derived by combining the motion control equations.The theoretical model of vibro-acoustic coupling is established by using the acoustic theory and fluid-structure coupling solution method under the simple harmonic acoustic wave.The system's natural frequency and sound transmission loss(STL)are obtained through programming calculations and compared with the literature and COMSOL simulation to verify the validity and reliability of the theoretical model.The effects of various factors,such as temperature,porosity coefficients,gradient index,core thickness,width-to-thickness ratio on the vibration,and STL characteristics of the system,are discussed.The results provide a theoretical basis for the application of porous foam FG plates in engineering to optimize vibration and sound transmission properties. 展开更多
关键词 porous foam functionally graded(FG)plate thermal environment natural frequency sound transmission loss(STL)
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部