期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Quantitative behavior of vibrational excitation in AC plasma assisted dry reforming of methane 被引量:3
1
作者 Jintao Sun Qi Chen +2 位作者 Yuanwei Guo Zili Zhou Yang Song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第7期133-143,I0005,共12页
Quantitative behavior of non-equilibrium excitation by direct electron impact in low-temperature dry reforming of methane was investigated by integrated studies of experimental validation and kinetic modeling.A plasma... Quantitative behavior of non-equilibrium excitation by direct electron impact in low-temperature dry reforming of methane was investigated by integrated studies of experimental validation and kinetic modeling.A plasma chemistry kinetic mechanism incorporating the reactions involving vibrational excitation of CH4,CO2,H2 and CO molecules as well as the low temperature He/CH4/CO2 conversion pathways was developed and validated.The calculation results showed that at lower E/N values(<150 Td)large population of energized electrons generated in a He/CH4/CO2 discharge resulted in an intensification of vibrational excitation.Despite the large generation of vibration,the vibrationally excited molecules in a 0.5/0.25/0.25 of He/CH4/CO2 discharge mixture were easy to relax,due to the strong coupling of the vibration of different molecules in a gas mixture.The results showed that the moderate levels of the vibrational excitation,such as CO2(v10,11,...,18)and CO(v9,10),presented most efficient in the stimulation of species generation including CO,CH2 O,CH3 OH,C2 H4 and C2 H6.Specifically,under conditions of E/N of 108 Td,14.9%of CO formation was estimated from the recombination of CO2(v)with CH3 and H,CO2(v)+CH3→CH3 O+CO,CO2(v)+H→CO+OH.Also,4.8%of C2 H4 formation was from the recombination reaction CH4(v)+CH→C2 H4+H.These results highlight the strong roles of vibrational states in a complex plasma chemistry system. 展开更多
关键词 Non-equilibrium plasma Dry reforming vibrational excitation Low-temperature chemistry Plasma assisted combustion
下载PDF
Kinetic roles of vibrational excitation in RF plasma assisted methane pyrolysis 被引量:1
2
作者 Jintao Sun Qi Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第12期188-197,共10页
A combined experimental and simulational work was carried out in this paper to investigate the kinetic effects of non-equilibrium excitation by direct electron impact on low temperature pyrolysis of CH4 in a RF dielec... A combined experimental and simulational work was carried out in this paper to investigate the kinetic effects of non-equilibrium excitation by direct electron impact on low temperature pyrolysis of CH4 in a RF dielectric barrier discharge.Special attention was placed on the vibrational chemistry of CH4 and some other important products including H2,C2H2,C2H4,C2H6 and C3H8 largely produced in CH4/He discharge under an intermediate reduced electric field ranging 51-80 Td.A detailed kinetic mechanism incorporating a set of electron impact reactions,electron-ion recombination reactions,negative ions attachment reactions,charge exchange reactions,reactions involving vibrationally excited molecules and the relaxation process of vibrationally excited species was assembled and experimentally validated.The modeling results showed a reasonable agreement with the experimentally measured results in terms of CH4 conversion and products production including C2 hydrocarbons and hydrogen.A linear increasing trend of methane conversion with increasing plasma power input was discovered,which suggested a strong dependence of molecular excitation on energy input.Both the CH4/He mole ratio and the reactor temperature play significant roles in CH4 conversion and major products production.The experimental results showed that the selectivity of value-added products C2H4 and H2 keeps essentially unchanged with increasing energy input,mostly because the contribution CH4 ionization and He excitation effectively compete with vibrational excitation and dissociation of CH4 molecule with the E/N value increasing.The calculated results showed that the typical relaxation time of vibrational states is comparable to the gas-kinetics time in a CH4/He discharge mixture,thus the vibrationally excited molecules can significantly accelerate chemical reactions through an effective decrease of activation energy.The path flux analysis revealed that the vibrationally excited molecules CH4(v)and H2(v)enhanced chain propagation reactions,such as CH4(v)+H→CH3+H2,CH4(v)+CH→C2 H4+H,and H2(v)+C→CH+H,further stimulating the production of active radicals and final products.Specifically,H2(v)+C→CH+H was responsible for 7.9%of CH radical formation and CH4(v)+CH→C2 H4+H accounted for 31.4%of total C2 H4 production.This kinetic study provides new sights in demonstrating the contribution of vibrationally excited molecules in RF plasma assisted methane pyrolysis. 展开更多
关键词 Non-equilibrium plasma Methane pyrolysis vibrational excitation Path flux analysis Sensitivity analysis
下载PDF
High order correlation polarization potential for vibrational excitation scattering of diatomic molecules by low-energy electrons
3
作者 冯灏 孙卫国 曾阳阳 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第11期4846-4851,共6页
This paper introduces a correlation-polarization potential with high order terms for vibrational excitation in electron-molecule scattering. The new polarization potential generalizes the two-term approximation so tha... This paper introduces a correlation-polarization potential with high order terms for vibrational excitation in electron-molecule scattering. The new polarization potential generalizes the two-term approximation so that it can better reflect the dependence of correlation and polarization effects on the position coordinate of the scattering electron. It applies the new potential on the vibrational excitation scattering from N2 in an energy range which includes the ^2Ⅱg shape resonance. The good agreement of theoretical resonant peaks with experiments shows that polarization potentials with high order terms are important and should be included in vibrational excitation scattering. 展开更多
关键词 vibrational excitation scattering correlation-polarization high order RESONANT
下载PDF
Effect of reagent vibrational excitation and isotope substitution on the stereo-dynamics of the Ba+HF→BaF+H reaction
4
作者 赵娟 罗一 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第4期295-300,共6页
Based on an extended London-Eyring-Polanyi-Sato (LEPS) potential energy surface (PES), the Ba q-HF reaction has been studied by the quasi-classical trajectory (QCT) method. The reaction integral cross section as... Based on an extended London-Eyring-Polanyi-Sato (LEPS) potential energy surface (PES), the Ba q-HF reaction has been studied by the quasi-classical trajectory (QCT) method. The reaction integral cross section as a function of collision energy for the Ba q- HF --* BaF q- H reaction is presented and the influence of isotope substitution on the differential cross sections (DCSs) and alignments of the product's rotational angular momentum have also been studied. The results suggest that the integral cross sections increase with increasing collision energy, and the vibrational excitation of the reagent has great influence on the DCS. In addition, the product's rotational polarization is very strong as a result of heavy-heavy-light (HHL) mass combination, and the distinct effect of isotope substitution on the stereodynamics is also revealed. 展开更多
关键词 quasi-classical trajectory method London-Eyring-Polanyi-Sato potential energy surface vibrational excitation of the reagent isotope substitution
下载PDF
Effects of a reagent’s rotational and vibrational excitations on reaction O(~3P) + H_2 (ν=0,3,j = 0,3,5,7,9,12,15) → OH+H
5
作者 许增慧 宗福建 +3 位作者 韩博然 董少华 刘建强 计峰 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期187-195,共9页
To investigate the effect of a reagent's rotational and vibrational excitations on the stereo-dynamics of the reaction product, the title reaction is theoretically simulated using the quasi-classical trajectory (QCT... To investigate the effect of a reagent's rotational and vibrational excitations on the stereo-dynamics of the reaction product, the title reaction is theoretically simulated using the quasi-classical trajectory (QCT) method on the 3A~ and 3Aq potentiM energy surfaces (PESs). The reaction cross section is considered as the only scalar property in this work at four different collision energies. Furthermore the vector properties including two polarization-dependent differential cross sections (PDDCSs), the angular distributions of product' rotational momentum are discussed at one fixed collision energy. Effects of reagents' rotational excitation on the reaction do exist regularly. 展开更多
关键词 chemical stereo-dynamics quasi-classical trajectory calculation vector correlation ro- tational and vibrational excitations
下载PDF
HIGHER VIBRATIONAL EXCITATION OF OH(Х~зП,v)FROM THE REACTION OF O(D)WITH TETRAMETHYLSILANE
6
作者 Xue Bin WANG Hong Zhi LI Quan JU Fan Ao KONG Qi He ZHU State Key Laboratory of Molecular Reaction Dynamics,Institute of Chemistry,Academia Sinica,Beijing,100080 《Chinese Chemical Letters》 SCIE CAS CSCD 1992年第12期991-992,共2页
The vibrational excited OH(X~ Ⅱ,v=1—4)was observed by time-resolved FTIR emission spectroscopy.The nascent species were produced by a reaction of O(~1D) and Si(CH_3).The effect of beery Si atom blocking the energy m... The vibrational excited OH(X~ Ⅱ,v=1—4)was observed by time-resolved FTIR emission spectroscopy.The nascent species were produced by a reaction of O(~1D) and Si(CH_3).The effect of beery Si atom blocking the energy migration was identified. 展开更多
关键词 D)WITH TETRAMETHYLSILANE v)FROM THE REACTION OF O HIGHER vibrational excitation OF OH
下载PDF
Effect of ro-vibrational excitation of NeH^+ on the stereodynamics for the reactions H+NeH^+(v=1-3,j=1,3,5) →H_2^++Ne
7
作者 尹淑慧 邹静涵 +4 位作者 郭明星 李磊 许雪松 高宏 车丽 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第2期524-530,共7页
The stereodynamics of the abstraction reaction H^+ NeH^+(v = 1-3,j = 1,3,5) → H2^+ + Ne is studied theoretically with a quasi-classical trajectory method on a new ab initio potential energy surface [ S J,Zhang ... The stereodynamics of the abstraction reaction H^+ NeH^+(v = 1-3,j = 1,3,5) → H2^+ + Ne is studied theoretically with a quasi-classical trajectory method on a new ab initio potential energy surface [ S J,Zhang P Y,Han K L and He G Z 2012 J.Chem.Phys.132 014303].The effects of vibrational and rotational excitation of reagent molecules on the polarization of the product are investigated.The reaction cross sections,the distributions of P(θr),P(φr),and polarizationdependent differential cross sections(PDDCSs) are calculated.The obtained cross sections indicate that the title reaction is a typical barrierless atom(ion)-ion(molecule) reaction.The initial vibrational excitation and rotational excitation of reagent molecules have distinctly different influences on stereodynamics of the title reaction,and the possible reasons for the differences are presented. 展开更多
关键词 stereodynamics quasi-classical trajectory polarization vibrational excitation rotational excitation
下载PDF
Effects of the vibrational and rotational excitation of reagent on the stereodynamics of the reaction S (3P) + H2→ SH + H 被引量:1
8
作者 单广玲 王美山 +1 位作者 杨传路 李艳青 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第6期580-586,共7页
Quasiclassical trajectory (QCT) calculations are first carried out to study the stereodynamics of the S (3p) + H2 → SH + H reaction based on the ab initio 13Atr potential energy surface (PES) (Lii etal. 2012... Quasiclassical trajectory (QCT) calculations are first carried out to study the stereodynamics of the S (3p) + H2 → SH + H reaction based on the ab initio 13Atr potential energy surface (PES) (Lii etal. 2012 J. Chem. Phys. 136 094308). The QCT-calculated reaction probabilities and cross sections for the S + H2 (v = 0, j = 0) reaction are in good agreement with the previous quantum mechanics (QM) results. The vector properties including the alignment, orientation, and polarization- dependent differential cross sections (PDDCSs) of the product SH are presented at a collision energy of 1.8 eV. The effects of the vibrational and rotational excitations of reagent on the stereodynamics are also investigated and discussed in the present work. The calculated QCT results indicate that the vibrational and rotational excitations of reagent play an important role in determining the stereodynamic properties of the title reaction. 展开更多
关键词 STEREODYNAMICS QCT method vector correlation vibrational and rotational excitation
下载PDF
Vector correlations study of the reaction N(~2D) + H_2(X^1Σ_g^+) →NH(a^1?) + H(~2S) with different collision energies and reagent vibration excitations
9
作者 李永庆 张永嘉 +2 位作者 赵金峰 赵美玉 丁勇 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第11期224-230,共7页
Vector correlations of the reaction N(2D) +H2(X1∑g+) NH(a1△)→ + H(2S) are studied based on a recent DMBE- SEC PES for the first excited state ofNH2 [J. Phys. Chem. A 114 9644 (2010)] by using a quasi-... Vector correlations of the reaction N(2D) +H2(X1∑g+) NH(a1△)→ + H(2S) are studied based on a recent DMBE- SEC PES for the first excited state ofNH2 [J. Phys. Chem. A 114 9644 (2010)] by using a quasi-classical trajectory method. The effects of collision energy and the reagent initial vibrational excitation on cross section and product polarization are investigated for v = 0-5 and j = 0 states in a wide collision energy range (10-50 kcal/mol). The integral cross section could be increased by H2 vibration excitation remarkably based on the DMBE-SEC PES. The different phenomena of differential cross sections with different collision energies and reagent vibration excitations are explained. Particularly, the NH molecules are scattered mainly in the backward hemisphere at low vibration quantum number and evolve from backward to forward direction with increasing vibration quantum number, which could be explained by the fact that the vibrational excitation enlarges the H-H distance in the entrance channel, thus enhancing the probability of collision between N atom and H atom. A further study on product polarization demonstrates that the collision energy and vibrational excitation of the reagent remarkably influence the distributions of P(Or), P((Pr), and P(Or, (Pr). 展开更多
关键词 vector correlations vibrational excitation differential cross section STEREODYNAMICS rotationalpolarization
下载PDF
The stereodynamic properties of the F+HO(v,j) → HF+O reaction on^1 A' and ~3A' potential energy surfaces by quasi-classical trajectory calculations:Initial excitation effect(v=1-3, j=0 and v= 0, j=1-3)
10
作者 赵丹 楚天舒 郝策 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第6期330-337,共8页
The stereodynamic properties of the F + HO (v, j) reaction are explored by quasi-classical trajectory (QCT) calculations performed on the 1At and 3At potential energy surfaces (PESs). Based on the polarization-... The stereodynamic properties of the F + HO (v, j) reaction are explored by quasi-classical trajectory (QCT) calculations performed on the 1At and 3At potential energy surfaces (PESs). Based on the polarization-dependent differential cross sections (PDDCSs) and the angular distributions of the product angular momentum with the reactant at different values of initial v or j, the results show that the product scattering and product polarization have strong links with initial vibrationalrotational numbers of v and j. The significant manifestation of the normal DCSs is that the forward scattering gradually becomes predominant with the initial vibrational excitation increasing, and the scattering angle of the HF product taking place on the 3At potential energy surface is found to be more sensitive to the initial value of v. The product orientation and alignment are strongly dependent on the initial rovibrational excitation effect. With enhancement in the initial rovibrational excitation effect, there is an overall decrease in the product orientation as well as in the product alignment either perpendicular to the reagent relative velocity vector k or along the direction of the y axis, for which the initial rotational excitation effect is much more noticeable than the vibrational excitation effect. Moreover, the initial rovibrational excitation effect on the product polarization is more pronounced for the 3At potential energy surface than for the 1At potential energy surface. 展开更多
关键词 STEREODYNAMICS quasi-classical trajectory rotational excitation vibrational excitation
下载PDF
Nonlinear Dynamic Analysis of Coupled Gear-Rotor-Bearing System with the Effect of Internal and External Excitations 被引量:11
11
作者 ZHOU Shihua SONG Guiqiu +1 位作者 REN Zhaohui WEN Bangchun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第2期281-292,共12页
Extensive studies on nonlinear dynamics of gear systems with internal excitation or external excitation respectively have been carried out. However, the nonlinear characteristics of gear systems under combined interna... Extensive studies on nonlinear dynamics of gear systems with internal excitation or external excitation respectively have been carried out. However, the nonlinear characteristics of gear systems under combined internal and external excitations are scarcely investigated. An eight-degree-of-freedom(8-DOF) nonlinear spur gear-rotor-bearing model, which contains backlash, transmission error, eccentricity, gravity and input/output torque, is established, and the coupled lateral-torsional vibration characteristics are studied. Based on the equations of motion, the coupled spur gear-rotor-bearing system(SGRBS) is investigated using the Runge-Kutta numerical method, and the effects of rotational speed, error fluctuation and load fluctuation on the dynamic responses are explored. The results show that a diverse range of nonlinear dynamic characteristics such as periodic motion, quasi-periodic motion, chaotic behaviors and impacts exhibited in the system are strongly attributed to the interaction between internal and external excitations. Significantly, the changing rotational speed could effectively control the vibration of the system. Vibration level increases with the increasing error fluctuation. Whereas the load fluctuation has an influence on the nonlinear dynamic characteristics and the increasing excitation force amplitude makes the vibration amplitude increase, the chaotic motion may be restricted. The proposed model and numerical results can be used for diagnosis of faults and vibration control of practical SGRBS. 展开更多
关键词 spur gear-rotor-bearing system(SGRBS) backlash eccentricity internal and external excitations coupled lateral-torsional vibration
下载PDF
Study of highly excited vibrational dynamics of HCP integrable system with dynamic potential methods 被引量:1
12
作者 王爱星 孙立风 +1 位作者 房超 刘义保 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第1期203-211,共9页
Highly excited vibrational dynamics of phosphaethyne(HCP)integrable system are investigated based on its dynamic potentials.Taking into consideration the 2:1 Fermi resonance between H–C–P bending vibrational mode an... Highly excited vibrational dynamics of phosphaethyne(HCP)integrable system are investigated based on its dynamic potentials.Taking into consideration the 2:1 Fermi resonance between H–C–P bending vibrational mode and C–P stretching vibrational mode,it is found that the effects of H–C stretching vibrational mode on vibrational dynamic features of the HCP integrable system are significant and regularly vary with Polyad numbers(P number).The geometrical profiles of the dynamic potentials and the corresponding fixed points are sensitive to the variation of H–C stretching vibrational strength when P numbers are small,but are not sensitive when P numbers become larger and the corresponding threshold values become lower.The phase space trajectories of different energy levels in a designated dynamic potential(P=28)were studied and the results indicated that the dynamic potentials govern the various dynamic environments in which the vibrational states lie.Furthermore,action integrals of the energy levels contained in dynamic potential(P=28)were quantitatively analyzed and elucidated.It was determined that the dynamic environments could be identified by the numerical values of the action integrals of trajectories of phase space,which is equivalent with dynamic potentials. 展开更多
关键词 phosphaethyne(HCP) highly excited vibrational state fixed point phase space trajectory
下载PDF
A Strategy for Magnifying Vibration in High-Energy Orbits of a Bistable Oscillator at Low Excitation Levels 被引量:2
13
作者 王光庆 廖维新 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第6期195-198,共4页
This work focuses on how to maintain a high-energy orbit motion of a bistable oscillator when subjected to a low level excitation. An elastic magnifier (EM) positioned between the base and the bistable oscillator is... This work focuses on how to maintain a high-energy orbit motion of a bistable oscillator when subjected to a low level excitation. An elastic magnifier (EM) positioned between the base and the bistable oscillator is used to magnify the base vibration displacement to significantly enhance the output characteristics of the bistable oscillator. The dimensionless electromechanical equations of the bistable oscillator with an EM are derived, and the effects of the mass and stiffness ratios between the EM and the bistable oscillator on the output displacement are studied. It is shown that the jump phenomenon occurs at a lower excitation level with increasing the mass and stiffness ratios. With the comparison of the displacement trajectories and the phase portraits obtained from experiments, it is vMidated that the bistable oscillator with an EM can effectively oscillate in a high-energy orbit and can generate a superior output vibration at a low excitation level as compared with the bistable oscillator without an EM. 展开更多
关键词 EM A Strategy for Magnifying Vibration in High-Energy Orbits of a Bistable Oscillator at Low excitation Levels
下载PDF
Analysis on Pseudo Excitation of Random Vibration for Structure of Time Flight Counter 被引量:1
14
作者 WU Qiong LI Dapeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第2期325-330,共6页
Traditional computing method is inefficient for getting key dynamical parameters of complicated structure.Pseudo Excitation Method(PEM)is an effective method for calculation of random vibration.Due to complicated an... Traditional computing method is inefficient for getting key dynamical parameters of complicated structure.Pseudo Excitation Method(PEM)is an effective method for calculation of random vibration.Due to complicated and coupling random vibration in rocket or shuttle launching,the new staging white noise mathematical model is deduced according to the practical launch environment.This deduced model is applied for PEM to calculate the specific structure of Time of Flight Counter(ToFC).The responses of power spectral density and the relevant dynamic characteristic parameters of ToFC are obtained in terms of the flight acceptance test level.Considering stiffness of fixture structure,the random vibration experiments are conducted in three directions to compare with the revised PEM.The experimental results show the structure can bear the random vibration caused by launch without any damage and key dynamical parameters of ToFC are obtained.The revised PEM is similar with random vibration experiment in dynamical parameters and responses are proved by comparative results.The maximum error is within 9%.The reasons of errors are analyzed to improve reliability of calculation.This research provides an effective method for solutions of computing dynamical characteristic parameters of complicated structure in the process of rocket or shuttle launching. 展开更多
关键词 pseudo excitation method power spectral density random processes dynamic response vibration
下载PDF
Enhanced ionization of vibrational hot carbon disulfide molecules in strong femtosecond laser fields
15
作者 左万龙 吕航 +4 位作者 梁红静 单石敏 马日 闫冰 徐海峰 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第6期257-261,共5页
By using a heated molecular beam in combination with a time-of-flight mass spectrometer, we experimentally study the ionization of vibrational-hot carbon disulfide(CS2) molecules irradiated by a linearly polarized 8... By using a heated molecular beam in combination with a time-of-flight mass spectrometer, we experimentally study the ionization of vibrational-hot carbon disulfide(CS2) molecules irradiated by a linearly polarized 800-nm 50-fs strong laser field. The ion yields are measured in a laser intensity range of 7.0 × 10^(12) W/cm^2–1.5 × 10^(14) W/cm^2 at different molecular temperatures of up to 1400 K. Enhanced ionization yield is observed for vibrationally excited CS2 molecules.The results show that the enhancement decreases as the laser intensity increases, and exhibits non-monotonical dependence on the molecular temperature. According to the calculated potential energy curves of the neutral and ionic electronic states of CS2, as well as the theoretical models of molecular strong-field ionization available in the literature, we discuss the mechanism of the enhanced ionization of vibrational-hot molecules. It is indicated that the enhanced ionization could be attributed to both the reduced ionization potential with vibrational excitation and the Frank–Condon factors between the neutral and ionic electronic states. Our study paves the way to understanding the effect of nuclear motion on the strongfield ionization of molecules, which would give a further insight into theoretical and experimental investigations on the interaction of polyatomic molecules with strong laser fields. 展开更多
关键词 strong field ionization vibrational excited time-of-flight-mass spectrum
下载PDF
Phonon-assisted excitation energy transfer in photosynthetic systems
16
作者 陈浩 王信 +1 位作者 方爱平 李宏荣 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第9期581-586,共6页
The phonon-assisted process of energy transfer aiming at exploring the newly emerging frontier between biology and physics is an issue of central interest.This article shows the important role of the intramolecular vi... The phonon-assisted process of energy transfer aiming at exploring the newly emerging frontier between biology and physics is an issue of central interest.This article shows the important role of the intramolecular vibrational modes for excitation energy transfer in the photosynthetic systems.Based on a dimer system consisting of a donor and an acceptor modeled by two two-level systems,in which one of them is coupled to a high-energy vibrational mode,we derive an effective Hamiltonian describing the vibration-assisted coherent energy transfer process in the polaron frame.The effective Hamiltonian reveals in the case that the vibrational mode dynamically matches the energy detuning between the donor and the acceptor,the original detuned energy transfer becomes resonant energy transfer.In addition,the population dynamics and coherence dynamics of the dimer system with and without vibration-assistance are investigated numerically.It is found that,the energy transfer efficiency and the transfer time depend heavily on the interaction strength of the donor and the high-energy vibrational mode,as well as the vibrational frequency.The numerical results also indicate that the initial state and dissipation rate of the vibrational mode have little influence on the dynamics of the dimer system.Results obtained in this article are not only helpful to understand the natural photosynthesis,but also offer an optimal design principle for artificial photosynthesis. 展开更多
关键词 excitation energy transfer high-energy intramolecular vibrational motion resonant coherent transfer
下载PDF
Separate Control of High Frequency Electro-hydraulic Vibration Exciter 被引量:7
17
作者 JIA Wen'ang RUAN Jian REN Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第2期293-302,共10页
The working frequency of the conventional electro-hydraulic vibration exciters,which consist of a servo valve and a hydraulic cylinder,is generally restricted within a narrow range due to limited frequency response ca... The working frequency of the conventional electro-hydraulic vibration exciters,which consist of a servo valve and a hydraulic cylinder,is generally restricted within a narrow range due to limited frequency response capability of the servo valve itself.To counteract such restriction,a novel scheme for an electro-hydraulic vibrator,controlled by a two-dimensional valve(2D valve) and a bias valve in parallel,is therefore proposed.The frequency,amplitude and offset are independently controlled by rotary speed,axial sliding of the spool of the 2D valve and axial sliding of the spool of the bias valve.The principle of separate control was presented and the regulation approach of frequency,amplitude and offset was discussed.A mathematical model of the hydraulic power mechanism for the proposed vibration exciter was established to investigate the relationship between the amplitude and the axial sliding of the 2D valve' spool,as well as that between the offset and the axial sliding of the bias valve's spool at various frequencies.An experimental system was built to validate the theoretical analysis.It is verified that the 2D exciter is capable of working smoothly in a frequency range of 5- 200 Hz.And its frequency,amplitude and offset can be controlled respectively by either closed loop or open loop method.There is a linear relationship between the output amplitude and the spool axial opening of the 2D valve until a point when the flow rate becomes saturate and the amplitude remains constant.The offset displacement of the cylinder's piston is linearly proportional to the axial displacement of the spool of the bias valve,when the valve opening is less than 25%.Thereafter,the slop of the offset curve decreases and tends to saturate.The proposed electro-hydraulic vibration controlled by the 2D valve not only facilitates the realization of high-frequency electro-hydraulic vibration,the high-accuracy of vibration can also be achieved by means of independent controls to the frequency,amplitude and offset. 展开更多
关键词 control valves electro-hydraulic system vibration exciter dynamics characteristics
下载PDF
A piezoelectric energy harvester based on internal resonance 被引量:13
18
作者 Liqun Chen Wenan Jiang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第2期223-228,共6页
A vibration-based energy harvester is essentially a resonator working in a limited frequency range.To increase the working frequency range is a challenging problem.This paper reveals a novel possibility for enhancing ... A vibration-based energy harvester is essentially a resonator working in a limited frequency range.To increase the working frequency range is a challenging problem.This paper reveals a novel possibility for enhancing energy harvesting via internal resonance.An internal resonance energy harvester is proposed.The excitation is successively assumed as the Gaussian white noise,the colored noise defined by a second-order filter,the narrow-band noise,and exponentially correlated noise.The corresponding averaged root-meansquare output voltages are computed.Numerical results demonstrate that the internal resonance increases the operating bandwidth and the output voltage. 展开更多
关键词 Vibration energy harvesting Internal resonance Stochastic excitations
下载PDF
Nonlinear parametrically excited vibration and active control of gear pair system with time-varying characteristic
19
作者 刘爽 王进进 +1 位作者 刘金杰 李雅倩 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第10期303-311,共9页
In the present work, we investigate the nonlinear parametrically excited vibration and active control of a gear pair system involving backlash, time-varying meshing stiffness and static transmission error. Firstly, a ... In the present work, we investigate the nonlinear parametrically excited vibration and active control of a gear pair system involving backlash, time-varying meshing stiffness and static transmission error. Firstly, a gear pair model is established in a strongly nonlinear form, and its nonlinear vibration characteristics are systematically investigated through different approaches. Several complicated phenomena such as period doubling bifurcation, anti period doubling bifurcation and chaos can be observed under the internal parametric excitation. Then, an active compensation controller is designed to suppress the vibration, including the chaos. Finally, the effectiveness of the proposed controller is verified numerically. 展开更多
关键词 nonlinear parametrically excited vibration time-varying meshing stiffness static transmission er-ror CHAOS
下载PDF
Quasiclassical trajectory theoretical study on the chemical stereodynamics of the O(~1D)+H_2→OH+H reaction and its isotopic variants (HD, D_2)
20
作者 姚翠霞 赵广久 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第8期399-403,共5页
The quasiclassical trajectory (QCT) method is used to study stereodynamic information about the reaction O (1D)+H2 --4OH+H on the DK (Dobbyn and Knowles) (llA;) ab initio potential energy surface (PES). A ... The quasiclassical trajectory (QCT) method is used to study stereodynamic information about the reaction O (1D)+H2 --4OH+H on the DK (Dobbyn and Knowles) (llA;) ab initio potential energy surface (PES). A wide scale of collision energy (Ec) from 0.05 eV to 0.5 eV is considered in the dynamic calculations. To reveal the rovibrational excitation effect, calculations at a collision energy of 0.52 eV are carried out for the v = 0 - 5, j = 0 and v = 0, j -- 0 - 15 initial states. The two popularly used polarization-dependent differential cross sections (PDDCSs), dtY0o/doh (0, 0) and dtra0/dtot(2, 0), and two angular distributions, P(φr) and P(φr) are calculated to obtain an insight into the alignment and the orientation of the product molecules. From the calculations, we can obtain that the alignment of the OH product is weaker at high collision energy and becomes stronger with the increase of initial vibrational level, and it is almost insensitive to the initially rotational excitation. Influences of the mass values of isotopes (HD, D2) on the stereodynamics are also shown and discussed. Comparisons between available theoretical results and experimental results are made and discussed. 展开更多
关键词 chemical stereodynamics quasiclassical trajectory vibrational and rotational excitation productalignment and orientation
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部