To improve the performance of MIMO-OFDM video transmission systems on the limitation of wireless bandwidth and transmitting power,we propose an adaptive joint resource allocation algorithm with unequal error protectio...To improve the performance of MIMO-OFDM video transmission systems on the limitation of wireless bandwidth and transmitting power,we propose an adaptive joint resource allocation algorithm with unequal error protection(UEP) based on joint source-channel coding(JSCC) according to H.264 video compression standard and RCPT channel coding.According to different thresholds of the average SNR of subchannels,the algorithm dynamically allocates the source coding parameters of original video data and the channel coding parameters of RCPT,which realizes UEP for the compressed video data of different importance.Through the bit and power allocation based on MQAM modulation and the subspace allocation based on beamforming technology for different subcarriers,an adaptive joint resource allocation making full use of space-frequency domain resources have been realized.The simulation results indicate that the algorithm improves the adaptability of video transmission systems in different wireless environments and the quality of video retrieval.展开更多
A novel joint optimization strategy for the secondary user( SU) was proposed to consider the short-term and long-term video transmissions over distributed cognitive radio networks( DCRNs).Since the long-term video tra...A novel joint optimization strategy for the secondary user( SU) was proposed to consider the short-term and long-term video transmissions over distributed cognitive radio networks( DCRNs).Since the long-term video transmission consisted of a series of shortterm transmissions, the optimization problem in the video transmission was a composite optimization process. Firstly,considering some factors like primary user's( PU's) collision limitations,non-synchronization between SU and PU,and SU's limited buffer size, the short-term optimization problem was formulated as a mixed integer non-linear program( MINLP) to minimize the block probability of video packets. Secondly,combining the minimum packet block probability obtained in shortterm optimization and SU's constraint on hardware complexity,the partially observable Markov decision process( POMDP) framework was proposed to learn PU's statistic information over DCRNs.Moreover,based on the proposed framework,joint optimization strategy was designed to obtain the minimum packet loss rate in long-term video transmission. Numerical simulation results were provided to demonstrate validity of our strategies.展开更多
In order to provide data for joints control of our recently designed crucian hke biomlmetlc robot fish, an A-ray photograph technology was adopted to determine the number and length of vertebral joints. A frame-by-fra...In order to provide data for joints control of our recently designed crucian hke biomlmetlc robot fish, an A-ray photograph technology was adopted to determine the number and length of vertebral joints. A frame-by-frame analysis of high-speed videotapes was conducted to quantify the kinematics of crucian at four speeds (12.651 cm·s^-1, 18.201 cm·s^-1, 21.901 cm·s^-1, 24.368cm·s^-1) during cruising. In addition to a brief introduction to experimental conditions and methods, we analyzed the influence of individual diversity on the absolute length as well as the non-dimensional length of vertebral joints. We also presented the maximal angular velocity and acceleration of vertebral joints under four swimming speeds, and provided the change of relative rotation angle, angular difference, angular velocity and angular acceleration of the rear vertebral joints with time at a certain swimming speed of 12.651 cm·s^-1. At last, we presented the maximal lateral displacement of each mark at that speed. The study found that the influence of individual diversity on the non-dimensional length of vertebral joints is not significant; the maximal angular velocity and acceleration of vertebral joints increase with swimming speed; angular difference, angular velocity and angular acceleration exhibit two maximal values over one period at a certain swimming speed.展开更多
Detecting feature points on the human body in video frames is a key step for tracking human movements. There have been methods developed that leverage models of human pose and classification of pixels of the body imag...Detecting feature points on the human body in video frames is a key step for tracking human movements. There have been methods developed that leverage models of human pose and classification of pixels of the body image. Yet, occlusion and robustness are still open challenges. In this paper, we present an automatic, model-free feature point detection and action tracking method using a time-of-flight camera. Our method automatically detects feature points for movement abstraction. To overcome errors caused by miss-detection and occlusion, a refinement method is devised that uses the trajectory of the feature points to correct the erroneous detections. Experiments were conducted using videos acquired with a Microsoft Kinect camera and a publicly available video set and comparisons were conducted with the state-of-the-art methods. The results demonstrated that our proposed method delivered improved and reliable performance with an average accuracy in the range of 90 %.The trajectorybased refinement also demonstrated satisfactory effectiveness that recovers the detection with a success rate of 93.7 %. Our method processed a frame in an average time of 71.1 ms.展开更多
基金Sponsored by the Fundamental Research Funds for the Central Universities (Grant No. HIT. NSRIF. 201149)the National Natural Science Foundation of China (Grant No. 61071104)
文摘To improve the performance of MIMO-OFDM video transmission systems on the limitation of wireless bandwidth and transmitting power,we propose an adaptive joint resource allocation algorithm with unequal error protection(UEP) based on joint source-channel coding(JSCC) according to H.264 video compression standard and RCPT channel coding.According to different thresholds of the average SNR of subchannels,the algorithm dynamically allocates the source coding parameters of original video data and the channel coding parameters of RCPT,which realizes UEP for the compressed video data of different importance.Through the bit and power allocation based on MQAM modulation and the subspace allocation based on beamforming technology for different subcarriers,an adaptive joint resource allocation making full use of space-frequency domain resources have been realized.The simulation results indicate that the algorithm improves the adaptability of video transmission systems in different wireless environments and the quality of video retrieval.
基金National Natural Science Foundation of China(No.61301101)
文摘A novel joint optimization strategy for the secondary user( SU) was proposed to consider the short-term and long-term video transmissions over distributed cognitive radio networks( DCRNs).Since the long-term video transmission consisted of a series of shortterm transmissions, the optimization problem in the video transmission was a composite optimization process. Firstly,considering some factors like primary user's( PU's) collision limitations,non-synchronization between SU and PU,and SU's limited buffer size, the short-term optimization problem was formulated as a mixed integer non-linear program( MINLP) to minimize the block probability of video packets. Secondly,combining the minimum packet block probability obtained in shortterm optimization and SU's constraint on hardware complexity,the partially observable Markov decision process( POMDP) framework was proposed to learn PU's statistic information over DCRNs.Moreover,based on the proposed framework,joint optimization strategy was designed to obtain the minimum packet loss rate in long-term video transmission. Numerical simulation results were provided to demonstrate validity of our strategies.
文摘In order to provide data for joints control of our recently designed crucian hke biomlmetlc robot fish, an A-ray photograph technology was adopted to determine the number and length of vertebral joints. A frame-by-frame analysis of high-speed videotapes was conducted to quantify the kinematics of crucian at four speeds (12.651 cm·s^-1, 18.201 cm·s^-1, 21.901 cm·s^-1, 24.368cm·s^-1) during cruising. In addition to a brief introduction to experimental conditions and methods, we analyzed the influence of individual diversity on the absolute length as well as the non-dimensional length of vertebral joints. We also presented the maximal angular velocity and acceleration of vertebral joints under four swimming speeds, and provided the change of relative rotation angle, angular difference, angular velocity and angular acceleration of the rear vertebral joints with time at a certain swimming speed of 12.651 cm·s^-1. At last, we presented the maximal lateral displacement of each mark at that speed. The study found that the influence of individual diversity on the non-dimensional length of vertebral joints is not significant; the maximal angular velocity and acceleration of vertebral joints increase with swimming speed; angular difference, angular velocity and angular acceleration exhibit two maximal values over one period at a certain swimming speed.
文摘Detecting feature points on the human body in video frames is a key step for tracking human movements. There have been methods developed that leverage models of human pose and classification of pixels of the body image. Yet, occlusion and robustness are still open challenges. In this paper, we present an automatic, model-free feature point detection and action tracking method using a time-of-flight camera. Our method automatically detects feature points for movement abstraction. To overcome errors caused by miss-detection and occlusion, a refinement method is devised that uses the trajectory of the feature points to correct the erroneous detections. Experiments were conducted using videos acquired with a Microsoft Kinect camera and a publicly available video set and comparisons were conducted with the state-of-the-art methods. The results demonstrated that our proposed method delivered improved and reliable performance with an average accuracy in the range of 90 %.The trajectorybased refinement also demonstrated satisfactory effectiveness that recovers the detection with a success rate of 93.7 %. Our method processed a frame in an average time of 71.1 ms.