In this paper, we propose a video searching system that utilizes face recognition as searching indexing feature. As the applications of video cameras have great increase in recent years, face recognition makes a perfe...In this paper, we propose a video searching system that utilizes face recognition as searching indexing feature. As the applications of video cameras have great increase in recent years, face recognition makes a perfect fit for searching targeted individuals within the vast amount of video data. However, the performance of such searching depends on the quality of face images recorded in the video signals. Since the surveillance video cameras record videos without fixed postures for the object, face occlusion is very common in everyday video. The proposed system builds a model for occluded faces using fuzzy principal component analysis(FPCA), and reconstructs the human faces with the available information. Experimental results show that the system has very high efficiency in processing the real life videos, and it is very robust to various kinds of face occlusions. Hence it can relieve people reviewers from the front of the monitors and greatly enhances the efficiency as well. The proposed system has been installed and applied in various environments and has already demonstrated its power by helping solving real cases.展开更多
Video surveillance is an active research topic in computer vision.In this paper,humans and cars identifcation technique suitable for real time video surveillance systems is presented.The technique we proposed includes...Video surveillance is an active research topic in computer vision.In this paper,humans and cars identifcation technique suitable for real time video surveillance systems is presented.The technique we proposed includes background subtraction,foreground segmentation,shadow removal,feature extraction and classifcation.The feature extraction of the extracted foreground objects is done via a new set of afne moment invariants based on statistics method and these were used to identify human or car.When the partial occlusion occurs,although features of full body cannot be extracted,our proposed technique extracts the features of head shoulder.Our proposed technique can identify human by extracting the human head-shoulder up to 60%–70%occlusion.Thus,it has a better classifcation to solve the issue of the loss of property arising from human occluded easily in practical applications.The whole system works at approximately 16 29 fps and thus it is suitable for real-time applications.The accuracy for our proposed technique in identifying human is very good,which is 98.33%,while for cars identifcation,the accuracy is also good,which is 94.41%.The overall accuracy for our proposed technique in identifying human and car is at 98.04%.The experiment results show that this method is efective and has strong robustness.展开更多
基金supported by the National Natural Science Foundation of China(No.61502256)
文摘In this paper, we propose a video searching system that utilizes face recognition as searching indexing feature. As the applications of video cameras have great increase in recent years, face recognition makes a perfect fit for searching targeted individuals within the vast amount of video data. However, the performance of such searching depends on the quality of face images recorded in the video signals. Since the surveillance video cameras record videos without fixed postures for the object, face occlusion is very common in everyday video. The proposed system builds a model for occluded faces using fuzzy principal component analysis(FPCA), and reconstructs the human faces with the available information. Experimental results show that the system has very high efficiency in processing the real life videos, and it is very robust to various kinds of face occlusions. Hence it can relieve people reviewers from the front of the monitors and greatly enhances the efficiency as well. The proposed system has been installed and applied in various environments and has already demonstrated its power by helping solving real cases.
文摘Video surveillance is an active research topic in computer vision.In this paper,humans and cars identifcation technique suitable for real time video surveillance systems is presented.The technique we proposed includes background subtraction,foreground segmentation,shadow removal,feature extraction and classifcation.The feature extraction of the extracted foreground objects is done via a new set of afne moment invariants based on statistics method and these were used to identify human or car.When the partial occlusion occurs,although features of full body cannot be extracted,our proposed technique extracts the features of head shoulder.Our proposed technique can identify human by extracting the human head-shoulder up to 60%–70%occlusion.Thus,it has a better classifcation to solve the issue of the loss of property arising from human occluded easily in practical applications.The whole system works at approximately 16 29 fps and thus it is suitable for real-time applications.The accuracy for our proposed technique in identifying human is very good,which is 98.33%,while for cars identifcation,the accuracy is also good,which is 94.41%.The overall accuracy for our proposed technique in identifying human and car is at 98.04%.The experiment results show that this method is efective and has strong robustness.