Particle filter is a common algorithm in video target tracking.But there are still some shortcomings,for example,particle degradation phenomenon.For solving this problem,the general solution is to introduce resampling...Particle filter is a common algorithm in video target tracking.But there are still some shortcomings,for example,particle degradation phenomenon.For solving this problem,the general solution is to introduce resampling step.At present,four kinds of resampling algorithms are widely used:multinomial resampling,residual resampling,stratified resampling and systematic resampling algorithms.In this paper,the performances of these four resampling algorithms were analyzed from realization principle,uniform distribution theory and computational complexity.Finally,through a series of video target tracking experiments,the systematic resampling algorithm had the smallest calculation load,the shortest running time and the maximum number of effective particles.So,it can be concluded that in the field of video target tracking,the systematic resampling algorithm has more advantages than other three algorithms both in the running time and the number of effective particles.展开更多
In the technique of video multi-target tracking,the common particle filter can not deal well with uncertain relations among multiple targets.To solve this problem,many researchers use data association method to reduce...In the technique of video multi-target tracking,the common particle filter can not deal well with uncertain relations among multiple targets.To solve this problem,many researchers use data association method to reduce the multi-target uncertainty.However,the traditional data association method is difficult to track accurately when the target is occluded.To remove the occlusion in the video,combined with the theory of data association,this paper adopts the probabilistic graphical model for multi-target modeling and analysis of the targets relationship in the particle filter framework.Ex-perimental results show that the proposed algorithm can solve the occlusion problem better compared with the traditional algorithm.展开更多
基金National Natural Science Foundations of China(Nos.61272097,61305014,61401257)China Scholarship Council(No.201508310033)+5 种基金Innovation Program of Shanghai Municipal Education Commission,China(No.14ZZ156)Natural Science Foundation of Shanghai,China(No.13ZR1455200)"Chen Guang"Project Supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation,China(No.13CG60)Funding Scheme for Training Young Teachers in Shanghai Colleges,China(No.ZZGJD13006)The Connotative Construction Projects of Shanghai Local Colleges in the 12th Five-Year,China(Nos.nhky-201442,nhrc-2015-11)The Opening Project of Shanghai Key Laboratory of Integrated Administration Technologies for Information Security,China(No.AGK2015006)
文摘Particle filter is a common algorithm in video target tracking.But there are still some shortcomings,for example,particle degradation phenomenon.For solving this problem,the general solution is to introduce resampling step.At present,four kinds of resampling algorithms are widely used:multinomial resampling,residual resampling,stratified resampling and systematic resampling algorithms.In this paper,the performances of these four resampling algorithms were analyzed from realization principle,uniform distribution theory and computational complexity.Finally,through a series of video target tracking experiments,the systematic resampling algorithm had the smallest calculation load,the shortest running time and the maximum number of effective particles.So,it can be concluded that in the field of video target tracking,the systematic resampling algorithm has more advantages than other three algorithms both in the running time and the number of effective particles.
基金Supported by the National High Technology Research and Development Program of China (No. 2007AA11Z227)the Natural Science Foundation of Jiangsu Province of China(No. BK2009352)the Fundamental Research Funds for the Central Universities of China (No. 2010B16414)
文摘In the technique of video multi-target tracking,the common particle filter can not deal well with uncertain relations among multiple targets.To solve this problem,many researchers use data association method to reduce the multi-target uncertainty.However,the traditional data association method is difficult to track accurately when the target is occluded.To remove the occlusion in the video,combined with the theory of data association,this paper adopts the probabilistic graphical model for multi-target modeling and analysis of the targets relationship in the particle filter framework.Ex-perimental results show that the proposed algorithm can solve the occlusion problem better compared with the traditional algorithm.