Integrated energy system(IES) is a viable route to “carbon peak and carbon neutral”. As the basis and cornerstone of economic operation and security of IES, energy flow calculation(EFC) has been widely studied. Trad...Integrated energy system(IES) is a viable route to “carbon peak and carbon neutral”. As the basis and cornerstone of economic operation and security of IES, energy flow calculation(EFC) has been widely studied. Traditional EFC focuses on the single or distributed slack bus models, which results in the lack of unlimited power to maintain system operation, especially for electric power grid working in islanded or coupled mode. To deal with this problem, this paper proposes a network-based virtual-slack bus(VSB) model in EFC. Firstly, considering the anticipated growth of energy conversion units(ECUs) with power adjustment capacity, the generators and ECUs are together modeled as a virtual slack bus model to reduce the concentrated power burden of IES. Based on this model, a power sensitivity method is designed to achieve the power sharing among the ECUs, where the power can be allocated adaptively based on the network conditions. Moreover, the method is helpful to maintain the voltage and pressure profile of IES. With these changes, a dynamic energy flow analysis including virtual slack bus types is extended for IES.It can realize the assessment of the system state. Finally, simulation studies illustrate the beneficial roles of the VSB model.展开更多
POTENTIAL is a virtual database machine based on general computing platforms, especially parallel computing platforms. It provides a complete solution to high-performance database systems by a 'virtual processor ...POTENTIAL is a virtual database machine based on general computing platforms, especially parallel computing platforms. It provides a complete solution to high-performance database systems by a 'virtual processor + virtual data bus + virtual memory' architecture. Virtual processors manage all CPU resources in the system, on which various operations are running. Virtual data bus is responsible for the management of data transmission between associated operations, which forms the hinges of the entire system. Virtual memory provides efficient data storage and buffering mechanisms that conform to data reference behaviors in database systems. The architecture of POTENTIAL is very clear and has many good features, including high efficiency, high scalability, high extensibility, high portability, etc.展开更多
基金supported by the National Key Research and Development Program of China (Grant No. 2018YFA0702200)the National Natural Science Foundation of China (Grant Nos. U20A20190 and 62073065)the Fundamental Research Funds for the Central Universities in China (Grant No. N2204003)。
文摘Integrated energy system(IES) is a viable route to “carbon peak and carbon neutral”. As the basis and cornerstone of economic operation and security of IES, energy flow calculation(EFC) has been widely studied. Traditional EFC focuses on the single or distributed slack bus models, which results in the lack of unlimited power to maintain system operation, especially for electric power grid working in islanded or coupled mode. To deal with this problem, this paper proposes a network-based virtual-slack bus(VSB) model in EFC. Firstly, considering the anticipated growth of energy conversion units(ECUs) with power adjustment capacity, the generators and ECUs are together modeled as a virtual slack bus model to reduce the concentrated power burden of IES. Based on this model, a power sensitivity method is designed to achieve the power sharing among the ECUs, where the power can be allocated adaptively based on the network conditions. Moreover, the method is helpful to maintain the voltage and pressure profile of IES. With these changes, a dynamic energy flow analysis including virtual slack bus types is extended for IES.It can realize the assessment of the system state. Finally, simulation studies illustrate the beneficial roles of the VSB model.
基金This work is supported by the National .'863' High-Tech Programme under grant! No.863-306-02-04-1the National Natural Scienc
文摘POTENTIAL is a virtual database machine based on general computing platforms, especially parallel computing platforms. It provides a complete solution to high-performance database systems by a 'virtual processor + virtual data bus + virtual memory' architecture. Virtual processors manage all CPU resources in the system, on which various operations are running. Virtual data bus is responsible for the management of data transmission between associated operations, which forms the hinges of the entire system. Virtual memory provides efficient data storage and buffering mechanisms that conform to data reference behaviors in database systems. The architecture of POTENTIAL is very clear and has many good features, including high efficiency, high scalability, high extensibility, high portability, etc.