A virtual cathode oscillator (VCO) with a resonant cavity is presented and investigated numerically and theoretically, and its efficiency and stability are enhanced. An equivalent circuit method is introduced to ana...A virtual cathode oscillator (VCO) with a resonant cavity is presented and investigated numerically and theoretically, and its efficiency and stability are enhanced. An equivalent circuit method is introduced to analyze the resonant cavity com- posed of anode foil and feedback annulus, and a theoretical expression for the fundamental mode frequency of the resonant cavity is given. The VCO is investigated in detail with a particle-in-cell method. We obtain the microwave frequencies from simulation, theoretical expression, and relative references, and draw three important conclusions. First, the microwave fre- quency is a constant when the diode voltage is changed from 588 kV to 717 kV. Second, the fluctuation of the microwave frequency is very small when the AK gap is changed from 1.2 cm to 1.6 cm. Third, the microwave frequency agrees with the theoretical result. The relative error, which is calculated according to the theoretical and simulation frequencies, is only 1.7%.展开更多
A new configuration of an axially-extracted vircator with three resonant cavities is put forward and optimized by simulation with the PIC code. The output power of over 1 GW is obtained at around 4.1 GHz in the experi...A new configuration of an axially-extracted vircator with three resonant cavities is put forward and optimized by simulation with the PIC code. The output power of over 1 GW is obtained at around 4.1 GHz in the experiment, in agreement well with the PIC simulation results. The beam to wave power conversion efficiency is more than 6.6%.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11075210)the Postdoctoral Science Foundation of China(GrantNo.201104761)
文摘A virtual cathode oscillator (VCO) with a resonant cavity is presented and investigated numerically and theoretically, and its efficiency and stability are enhanced. An equivalent circuit method is introduced to analyze the resonant cavity com- posed of anode foil and feedback annulus, and a theoretical expression for the fundamental mode frequency of the resonant cavity is given. The VCO is investigated in detail with a particle-in-cell method. We obtain the microwave frequencies from simulation, theoretical expression, and relative references, and draw three important conclusions. First, the microwave fre- quency is a constant when the diode voltage is changed from 588 kV to 717 kV. Second, the fluctuation of the microwave frequency is very small when the AK gap is changed from 1.2 cm to 1.6 cm. Third, the microwave frequency agrees with the theoretical result. The relative error, which is calculated according to the theoretical and simulation frequencies, is only 1.7%.
文摘A new configuration of an axially-extracted vircator with three resonant cavities is put forward and optimized by simulation with the PIC code. The output power of over 1 GW is obtained at around 4.1 GHz in the experiment, in agreement well with the PIC simulation results. The beam to wave power conversion efficiency is more than 6.6%.