Three-dimensional modeling of virtual hoisting machinery is the critical works to structure the system of virtual construction, and the foundation to realize intelligent and interactive virtual hoisting. Aimed at enha...Three-dimensional modeling of virtual hoisting machinery is the critical works to structure the system of virtual construction, and the foundation to realize intelligent and interactive virtual hoisting. Aimed at enhancing the requests of image quality and stability of the virtual construction scene, taking a tower crane for example. We studied the technology of three-dimensional modeling and optimization of a virtual tower crane, and a method named two-stage model optimization was put forward. This depended on the modeling stage using Solidworks and 3DS Max and the performance optimization stage in EON. The practice of software development indicates that the proposed methods of three-dimensional modeling and optimization could satisfy the performance request of virtual construction system and be popularized to other virtual system.展开更多
An optimal burst height is required for the fly-over and shoot-down smart ammunition with an EFP warhead at the instant of explosion which brings a special requirement to the miss distance of the terminal guidance law...An optimal burst height is required for the fly-over and shoot-down smart ammunition with an EFP warhead at the instant of explosion which brings a special requirement to the miss distance of the terminal guidance law. In this paper, a guidance law based on the virtual target scheme is proposed. First, the practical pursuit-evasion issue between the ammunition and the target with specific miss distance is transformed into a virtuai pursuit-evasion problem with zero miss distance. Secondly, a complete three-dimensional pursuit-evasion kinematics model is established without any simplifications. And then, a suboptimal guidance law is designed based on the θ-D method which has constraints of the elevation and azimuth angular velocity of the virtual line of sight (LOS). Finally, in order to verify the performance of the proposed guidance law, three test cases are conducted. Numericai results show that under the proposed terminal guidance law, the smart ammunition not only can fly above the target with an optimal burst height but also have a smaller normal acceleration on the terminal trajectory.展开更多
Only two macroscopic parameters are needed to describe the mechanical properties of linear elastic solids, i.e. the Poisson's ratio and Young's modulus. Correspondingly, there should be two microscopic parameters to...Only two macroscopic parameters are needed to describe the mechanical properties of linear elastic solids, i.e. the Poisson's ratio and Young's modulus. Correspondingly, there should be two microscopic parameters to determine the mechanical properties of material if the macroscopic mechanical properties of linear elastic solids are derived from the microscopic level. Enlightened by this idea, a multiscale mechanical model for material, the virtual multi-dimensional internal bonds (VMIB) model, is proposed by incorporating a shear bond into the virtual internal bond (VIB) model. By this modification, the VMIB model associates the macro mechanical properties of material with the microscopic mechanical properties of discrete structure and the corresponding relationship between micro and macro parameters is derived. The tensor quality of the energy density function, which contains coordinate vector, is mathematically proved. From the point of view of VMIB, the macroscopic nonlinear behaviors of material could be attributed to the evolution of virtual bond distribution density induced by the imposed deformation. With this theoretical hypothesis, as an application example, a uniaxial compressive failure of brittle material is simulated. Good agreement between the experimental results and the simulated ones is found.展开更多
Technological breakthroughs have advanced the temporal and spatial resolutions of diagnostic imaging, and 3 dimensional (3-D) reconstruction techniques have been introduced into everyday clinical practice. Virtual e...Technological breakthroughs have advanced the temporal and spatial resolutions of diagnostic imaging, and 3 dimensional (3-D) reconstruction techniques have been introduced into everyday clinical practice. Virtual endoscopy (VE) is a non-invasive technique that amplifies the perception of cross-sectional images in the 3-D space, providing precise spatial relationships of pathological regions and their surrounding structures. A variety of computer algorithms can be used to generate 3-D images, taking advantage of the information inherent in either spiral computed tomography or magnetic resonance imaging (MRI). VE images enable endoluminal navigation through hollow organs, thus simulating conventional endoscopy. Several clinical studies have validated the diagnostic utility of virtual cystoscopy, which has high sensitivity and specificity rates in the detection of bladder tumor. Published experience in the virtual exploration of the renal pelvis, ureter and urethra is encouraging but still scarce. VE is a safe, non-invasive method that could be applied in the long-term follow-up of patients with ureteropelvic junction obstruction, urinary bladder tumors and ureteral and/or urethral strictures. Its principal limitations are the inability to provide biopsy tissue specimens for histopathologic examination and the associated ionizing radiation hazards (unless MR/is used). However, in the case of endoluminal stenosis or obstruction, VE permits virtual endoluminal navigation both cephalad and caudal to the stenotic segment. To conclude, VE provides a less invasive method of evaluating the urinary tract, especially for clinicians who are less familiar with cross-sectional imaging than radiologists. (Asian J Androl 2006 Jan; 8: 31-38)展开更多
AIM: To present our initial experience regarding the feasibility of ultrasound virtual endoscopy(USVE) and its measurement reliability for polyp detection in an in vitro study using pig intestine specimens.METHODS: Si...AIM: To present our initial experience regarding the feasibility of ultrasound virtual endoscopy(USVE) and its measurement reliability for polyp detection in an in vitro study using pig intestine specimens.METHODS: Six porcine intestine specimens containing 30 synthetic polyps underwent USVE, computed tomography colonography(CTC) and optical colonoscopy(OC) for polyp detection. The polyp measurement defined as the maximum polyp diameter on twodimensional(2D) multiplanar reformatted(MPR) planes was obtained by USVE, and the absolute measurement error was analyzed using the direct measurement as the reference standard.RESULTS: USVE detected 29(96.7%) of 30 polyps, remaining a 7-mm one missed. There was one falsepositive finding. Twenty-six(89.7%) of 29 reconstructedimages were clearly depicted, while 29(96.7%) of 30 polyps were displayed on CTC with one false-negative finding. In OC, all the polyps were detected. The intraclass correlation coefficient was 0.876(95%CI: 0.745-0.940) for measurements obtained with USVE. The pooled absolute measurement errors ± the standard deviations of the depicted polyps with actual sizes ≤ 5 mm, 6-9 mm, and ≥ 10 mm were 1.9 ± 0.8 mm, 0.9 ± 1.2 mm, and 1.0 ± 1.4 mm, respectively.CONCLUSION: USVE is reliable for polyp detection and measurement in in vitro study.展开更多
Three-dimensional visualization technology converts engineering design drawings and data into graphics or images, realizes virtual reality perception of simulated users in future construction scene, enhances the inter...Three-dimensional visualization technology converts engineering design drawings and data into graphics or images, realizes virtual reality perception of simulated users in future construction scene, enhances the interaction between project management and technical personnel and engineering construction achievement, and provides intuitive, flexible and strong realistic experience for project management. It can effectively improve the level of project communication, and assist the needs of project construction planning management, training, exhibition, etc. As a tool to help improve project management skills, it has good application effect and prospects.展开更多
The pincipl of a 6 DOF (degress of freedom) input device using ultrasonic distance measurement is presented in this paper. The system employs the method of measuring the time of flight. In addition, some techniques, i...The pincipl of a 6 DOF (degress of freedom) input device using ultrasonic distance measurement is presented in this paper. The system employs the method of measuring the time of flight. In addition, some techniques, including automatic gain control, self-adaptive variable threshold and temperature compensation, are also used to improve precision. Then, the positions and orientation of the input device can be calculated by the method of spatial analytic geometry. Meanwhile, commands from the 3-D input device are detected and carried out. The validity and precision of the input device are verified by the experiment in a robot system. The proposed device not only can be used for end effector position and orientation measurement in telerobotics, but also can be an interactive device in virtual reality systems, such as helmet tracking, viewpoint navigation and object manipulation.展开更多
The spatial evolution of vortices and transition to three-dimensionality in the wake of two circular cylinders in tandem arrangement have been numerically studied. An improved virtual body method developed from the vi...The spatial evolution of vortices and transition to three-dimensionality in the wake of two circular cylinders in tandem arrangement have been numerically studied. An improved virtual body method developed from the virtual boundary method is used here. A Reynolds number range between 220 and 270 has been considered, and the spacing between two cylinders is selected as L/D=3 and L/D=3.5. When L/D=3, the secondary vortices of Mode-A are seen to appear at Re=240 and persist over the range of the Reynolds number of 240~270. When L/D=3.5, the similar critical Reynolds number has been found at Re=250. No obvious discontinuity has been found in the Strouhal-Reynolds number relationship, and this is different from three-dimensional flow around a single cylinder at the critical Reynolds number. The spanwise wavelength is about four times the diameter of the cylinder, and it is the characteristic wavelength for Mode-A instability. This paper can give some foremost insight into the three-dimensional instability of flow by complicated geometrical configuration.展开更多
基金supported by Special Project of Scientific Research of Education Department of Shaanxi Provincial Government under Grant No.11JK0967
文摘Three-dimensional modeling of virtual hoisting machinery is the critical works to structure the system of virtual construction, and the foundation to realize intelligent and interactive virtual hoisting. Aimed at enhancing the requests of image quality and stability of the virtual construction scene, taking a tower crane for example. We studied the technology of three-dimensional modeling and optimization of a virtual tower crane, and a method named two-stage model optimization was put forward. This depended on the modeling stage using Solidworks and 3DS Max and the performance optimization stage in EON. The practice of software development indicates that the proposed methods of three-dimensional modeling and optimization could satisfy the performance request of virtual construction system and be popularized to other virtual system.
基金Supported by the Fundamental Scientific Research Program of China Ministries and Commissions(B2220132013)
文摘An optimal burst height is required for the fly-over and shoot-down smart ammunition with an EFP warhead at the instant of explosion which brings a special requirement to the miss distance of the terminal guidance law. In this paper, a guidance law based on the virtual target scheme is proposed. First, the practical pursuit-evasion issue between the ammunition and the target with specific miss distance is transformed into a virtuai pursuit-evasion problem with zero miss distance. Secondly, a complete three-dimensional pursuit-evasion kinematics model is established without any simplifications. And then, a suboptimal guidance law is designed based on the θ-D method which has constraints of the elevation and azimuth angular velocity of the virtual line of sight (LOS). Finally, in order to verify the performance of the proposed guidance law, three test cases are conducted. Numericai results show that under the proposed terminal guidance law, the smart ammunition not only can fly above the target with an optimal burst height but also have a smaller normal acceleration on the terminal trajectory.
基金Project supported by the National Basic Research Program of China (973 Project) (No. 2002CB412704).
文摘Only two macroscopic parameters are needed to describe the mechanical properties of linear elastic solids, i.e. the Poisson's ratio and Young's modulus. Correspondingly, there should be two microscopic parameters to determine the mechanical properties of material if the macroscopic mechanical properties of linear elastic solids are derived from the microscopic level. Enlightened by this idea, a multiscale mechanical model for material, the virtual multi-dimensional internal bonds (VMIB) model, is proposed by incorporating a shear bond into the virtual internal bond (VIB) model. By this modification, the VMIB model associates the macro mechanical properties of material with the microscopic mechanical properties of discrete structure and the corresponding relationship between micro and macro parameters is derived. The tensor quality of the energy density function, which contains coordinate vector, is mathematically proved. From the point of view of VMIB, the macroscopic nonlinear behaviors of material could be attributed to the evolution of virtual bond distribution density induced by the imposed deformation. With this theoretical hypothesis, as an application example, a uniaxial compressive failure of brittle material is simulated. Good agreement between the experimental results and the simulated ones is found.
文摘Technological breakthroughs have advanced the temporal and spatial resolutions of diagnostic imaging, and 3 dimensional (3-D) reconstruction techniques have been introduced into everyday clinical practice. Virtual endoscopy (VE) is a non-invasive technique that amplifies the perception of cross-sectional images in the 3-D space, providing precise spatial relationships of pathological regions and their surrounding structures. A variety of computer algorithms can be used to generate 3-D images, taking advantage of the information inherent in either spiral computed tomography or magnetic resonance imaging (MRI). VE images enable endoluminal navigation through hollow organs, thus simulating conventional endoscopy. Several clinical studies have validated the diagnostic utility of virtual cystoscopy, which has high sensitivity and specificity rates in the detection of bladder tumor. Published experience in the virtual exploration of the renal pelvis, ureter and urethra is encouraging but still scarce. VE is a safe, non-invasive method that could be applied in the long-term follow-up of patients with ureteropelvic junction obstruction, urinary bladder tumors and ureteral and/or urethral strictures. Its principal limitations are the inability to provide biopsy tissue specimens for histopathologic examination and the associated ionizing radiation hazards (unless MR/is used). However, in the case of endoluminal stenosis or obstruction, VE permits virtual endoluminal navigation both cephalad and caudal to the stenotic segment. To conclude, VE provides a less invasive method of evaluating the urinary tract, especially for clinicians who are less familiar with cross-sectional imaging than radiologists. (Asian J Androl 2006 Jan; 8: 31-38)
基金Supported by The National Natural Science Foundation of China,No.81271576
文摘AIM: To present our initial experience regarding the feasibility of ultrasound virtual endoscopy(USVE) and its measurement reliability for polyp detection in an in vitro study using pig intestine specimens.METHODS: Six porcine intestine specimens containing 30 synthetic polyps underwent USVE, computed tomography colonography(CTC) and optical colonoscopy(OC) for polyp detection. The polyp measurement defined as the maximum polyp diameter on twodimensional(2D) multiplanar reformatted(MPR) planes was obtained by USVE, and the absolute measurement error was analyzed using the direct measurement as the reference standard.RESULTS: USVE detected 29(96.7%) of 30 polyps, remaining a 7-mm one missed. There was one falsepositive finding. Twenty-six(89.7%) of 29 reconstructedimages were clearly depicted, while 29(96.7%) of 30 polyps were displayed on CTC with one false-negative finding. In OC, all the polyps were detected. The intraclass correlation coefficient was 0.876(95%CI: 0.745-0.940) for measurements obtained with USVE. The pooled absolute measurement errors ± the standard deviations of the depicted polyps with actual sizes ≤ 5 mm, 6-9 mm, and ≥ 10 mm were 1.9 ± 0.8 mm, 0.9 ± 1.2 mm, and 1.0 ± 1.4 mm, respectively.CONCLUSION: USVE is reliable for polyp detection and measurement in in vitro study.
文摘Three-dimensional visualization technology converts engineering design drawings and data into graphics or images, realizes virtual reality perception of simulated users in future construction scene, enhances the interaction between project management and technical personnel and engineering construction achievement, and provides intuitive, flexible and strong realistic experience for project management. It can effectively improve the level of project communication, and assist the needs of project construction planning management, training, exhibition, etc. As a tool to help improve project management skills, it has good application effect and prospects.
文摘The pincipl of a 6 DOF (degress of freedom) input device using ultrasonic distance measurement is presented in this paper. The system employs the method of measuring the time of flight. In addition, some techniques, including automatic gain control, self-adaptive variable threshold and temperature compensation, are also used to improve precision. Then, the positions and orientation of the input device can be calculated by the method of spatial analytic geometry. Meanwhile, commands from the 3-D input device are detected and carried out. The validity and precision of the input device are verified by the experiment in a robot system. The proposed device not only can be used for end effector position and orientation measurement in telerobotics, but also can be an interactive device in virtual reality systems, such as helmet tracking, viewpoint navigation and object manipulation.
基金This work was financially supported by the National Natural Science Foundation of China (Grant No. 10272094)
文摘The spatial evolution of vortices and transition to three-dimensionality in the wake of two circular cylinders in tandem arrangement have been numerically studied. An improved virtual body method developed from the virtual boundary method is used here. A Reynolds number range between 220 and 270 has been considered, and the spacing between two cylinders is selected as L/D=3 and L/D=3.5. When L/D=3, the secondary vortices of Mode-A are seen to appear at Re=240 and persist over the range of the Reynolds number of 240~270. When L/D=3.5, the similar critical Reynolds number has been found at Re=250. No obvious discontinuity has been found in the Strouhal-Reynolds number relationship, and this is different from three-dimensional flow around a single cylinder at the critical Reynolds number. The spanwise wavelength is about four times the diameter of the cylinder, and it is the characteristic wavelength for Mode-A instability. This paper can give some foremost insight into the three-dimensional instability of flow by complicated geometrical configuration.