The cooperative work between human being and computer based on virtual reality (VR) is investigated to plan the disassembly sequences more efficiently. A three-layer model of human-computer cooperative virtual disasse...The cooperative work between human being and computer based on virtual reality (VR) is investigated to plan the disassembly sequences more efficiently. A three-layer model of human-computer cooperative virtual disassembly is built, and the corresponding human-computer system for stable virtual disassembly is developed. In this system, an immersive and interactive virtual disassembly environment has been created to provide planners with a more visual working scene. For cooperative disassembly, an intelligent module of stability analysis of disassembly operations is embedded into the human-computer system to assist planners to implement disassembly tasks better. The supporting matrix for stability analysis of disassembly operations is defined and the method of stability analysis is detailed. Based on the approach, the stability of any disassembly operation can be analyzed to instruct the manual virtual disassembly. At last, a disassembly case in the virtual environment is given to prove the validity of above ideas.展开更多
Previous collision detection methods for virtual disassembly mainly detect collisions at discrete time intervals and use oriented bounding boxes to speed up the process. However, these discrete methods cannot guarante...Previous collision detection methods for virtual disassembly mainly detect collisions at discrete time intervals and use oriented bounding boxes to speed up the process. However, these discrete methods cannot guarantee no penetration occurs when the components move. Meanwhile, because some of the components are embedded into each other, these components cannot be separated in the subsequent process. To solve these problems, we propose an approach for real-time collision handling by utilizing the computational power of modern GPUs. First we present a novel GPU-based collision handling framework for virtual disassembly. Second we use a collision-streams based continuous collision detection to guarantee no collision missed. Finally we introduce a triangle intersection detection algorithm to solve the problem that collision cannot be detected when the components are embedded into each other at the initial configuration. The experimental results show that our method can improve the overall performance of collision detection and achieve real-time simulation.展开更多
基金This project is supported by National Natural Science Foundation of China (No.59990470-2).
文摘The cooperative work between human being and computer based on virtual reality (VR) is investigated to plan the disassembly sequences more efficiently. A three-layer model of human-computer cooperative virtual disassembly is built, and the corresponding human-computer system for stable virtual disassembly is developed. In this system, an immersive and interactive virtual disassembly environment has been created to provide planners with a more visual working scene. For cooperative disassembly, an intelligent module of stability analysis of disassembly operations is embedded into the human-computer system to assist planners to implement disassembly tasks better. The supporting matrix for stability analysis of disassembly operations is defined and the method of stability analysis is detailed. Based on the approach, the stability of any disassembly operation can be analyzed to instruct the manual virtual disassembly. At last, a disassembly case in the virtual environment is given to prove the validity of above ideas.
基金This work was supported by the National Natural Science Foundation of China under Grant No. 61472111, the Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ13F020016, the Foundation of Zhejiang Educational Committee under Grant No. Y201224034, and the Scientific Research Start Foundation of Hangzhou Dianzi University under Grant No. KYS225613032.
文摘Previous collision detection methods for virtual disassembly mainly detect collisions at discrete time intervals and use oriented bounding boxes to speed up the process. However, these discrete methods cannot guarantee no penetration occurs when the components move. Meanwhile, because some of the components are embedded into each other, these components cannot be separated in the subsequent process. To solve these problems, we propose an approach for real-time collision handling by utilizing the computational power of modern GPUs. First we present a novel GPU-based collision handling framework for virtual disassembly. Second we use a collision-streams based continuous collision detection to guarantee no collision missed. Finally we introduce a triangle intersection detection algorithm to solve the problem that collision cannot be detected when the components are embedded into each other at the initial configuration. The experimental results show that our method can improve the overall performance of collision detection and achieve real-time simulation.