The power grid is undergoing a transformation from synchronous generators(SGs) toward inverter-based resources(IBRs). The stochasticity, asynchronicity, and limited-inertia characteristics of IBRs bring about challeng...The power grid is undergoing a transformation from synchronous generators(SGs) toward inverter-based resources(IBRs). The stochasticity, asynchronicity, and limited-inertia characteristics of IBRs bring about challenges to grid resilience. Virtual power plants(VPPs) are emerging technologies to improve the grid resilience and advance the transformation. By judiciously aggregating geographically distributed energy resources(DERs) as individual electrical entities, VPPs can provide capacity and ancillary services to grid operations and participate in electricity wholesale markets. This paper aims to provide a concise overview of the concept and development of VPPs and the latest progresses in VPP operation, with the focus on VPP scheduling and control. Based on this overview, we identify a few potential challenges in VPP operation and discuss the opportunities of integrating the multi-agent system(MAS)-based strategy into the VPP operation to enhance its scalability, performance and resilience.展开更多
The synchronous virtual machine uses inverter power to imitate the performance of the conventional synchronous machine.It also has the same inertia,damping,frequency,voltage regulation,and other external performance a...The synchronous virtual machine uses inverter power to imitate the performance of the conventional synchronous machine.It also has the same inertia,damping,frequency,voltage regulation,and other external performance as the generator.It is the key technology to realize new energy grid connections’stable and reliable operation.This project studies a dynamic simulation model of an extensive new energy power system based on the virtual synchronous motor.A new energy storage method is proposed.The mathematical energy storage model is established by combining the fixed rotor model of a synchronous virtual machine with the charge-discharge power,state of charge,operation efficiency,dead zone,and inverter constraint.The rapid conversion of energy storage devices absorbs the excess instantaneous kinetic energy caused by interference.The branch transient of the critical cut set in the system can be confined to a limited area.Thus,the virtual synchronizer’s kinetic and potential energy can be efficiently converted into an instantaneous state.The simulation of power system analysis software package(PSASP)verifies the correctness of the theory and algorithm in this paper.This paper provides a theoretical basis for improving the transient stability of new energy-connected power grids.展开更多
In order to improve efficiency of virtual enterprise, a manufacturing grid and multilevel manufacturing system of virtual enterprise is built up. When selecting member enterprises and task assignment based on the manu...In order to improve efficiency of virtual enterprise, a manufacturing grid and multilevel manufacturing system of virtual enterprise is built up. When selecting member enterprises and task assignment based on the manufacturing grid, key activities are assigned to the suitable critical member enterprises by task decomposition, enterprise node searching and characteristic matching of manufacturing resources according to the characteristic matching strategy. By task merger, some ordinary activities are merged with corresponding key activities and assigned to corresponding critical member enterprises. However, the other ordinary activities are assigned to the related ordinary member enterprises with enterprise node searching and characteristic matching of manufacturing resources. Finally, an example of developing the artificial hip joint in the virtual enterprise is used to demonstrate that efficiency of the virtual enterprise is improved by using the manufacturing grid and the proposed strategies for member enterprise selection and task assignment.展开更多
The brushless doubly-fed wind power system based on conventional power control strategies lacks ‘inertia’ and the ability to support grid,which leads to the decline of grid stability.Therefore,a control strategy of ...The brushless doubly-fed wind power system based on conventional power control strategies lacks ‘inertia’ and the ability to support grid,which leads to the decline of grid stability.Therefore,a control strategy of brushless doubly-fed reluctance generator(BDFRG) based on virtual synchronous generator(VSG) control is proposed to solve the problem in this paper.The output characteristics of BDFRG based on VSG are similar to a synchronous generator(SG),which can support the grid frequency and increase the system ‘inertia’.According to the mathematical model of BDFRG,the inner loop voltage source control of BDFRG is derived.In addition,the specific structure and parameter selection principle of outer loop VSG control are expounded.The voltage source control inner loop of BDFRG is combined with the VSG control outer loop to establish the overall architecture of BDFRG-VSG control strategy.Finally,the effectiveness and feasibility of the proposed strategy are verified in the simulation.展开更多
The global water demand and supply situation is becoming increasingly severe due to water shortage and uneven distribution of water resources.The highest water demand in the energy sector is attributable to power gene...The global water demand and supply situation is becoming increasingly severe due to water shortage and uneven distribution of water resources.The highest water demand in the energy sector is attributable to power generation.With cross-country and cross-continental power grid interconnections becoming a reality,electricity trading across countries and the creation of new opportunities for re-allocation of water resources are possible.This study expands the concept of virtual water and proposes a generalized virtual water flow in an interconnected power grid system to accurately estimate water resource benefits of clean power transmission from both the production and the consumption sides.By defining the water scarcity index as a price mechanism indicator,the benefits of water resources allocation through power grid interconnections are evaluated.Taking the Africa-Asia-Europe interconnection scenario as an example,the total water saving would amount to 88.95 million m^3 by 2030 and 337.8 million m^3 by 2050.This result shows that grid interconnections could promote the development of renewable energy and expand the benefits of available water resources.展开更多
Based on surface mount products virtual assembly technology,the solder joint reliability of plastic ball grid array (PBGA) was studied. Four process parameters,including the upper pad diameter,the stencil thickness,th...Based on surface mount products virtual assembly technology,the solder joint reliability of plastic ball grid array (PBGA) was studied. Four process parameters,including the upper pad diameter,the stencil thickness,the chip weight on a single solder joint and the lower pad diameter were chose as four control factors. By using an L25(56) orthogonal array the PBGA solder joints which have 25 different process parameters’ levels combinations were designed. The numerical models of all the 25 PBGA solder joints were developed and the finite element analysis models were setup. The stress and strain distribution within the PBGA solder joints under thermal cycles were studied by finite element analysis,and the thermal fatigue life of PBGA solder joint was calculated using Coffin-Manson equation. Based on the calculated thermal fatigue life results,the range analysis was performed. The results of study show that that the impact sequence of the four factors from high to low on the fatigue life of PBGA solder joints are the stencil thickness,the upper pad diameter,the lower pad diameter and the chip weight on a single solder joint; the best level combination ofprocess parameters that results in the longest fatigue life is the lower pad diameter of 0.6 mm,the stencil thickness of 0.175 mm,the chip weight on asingle solder joint of 28×10 -5 N and the upper pad diameter of 0.5 mm.展开更多
The virtual grid method used in the embedding technique to solve the problem of finding interpolating cells of the inner and outer boundary points near joint regions was developed for calculating the viscous flows aro...The virtual grid method used in the embedding technique to solve the problem of finding interpolating cells of the inner and outer boundary points near joint regions was developed for calculating the viscous flows around a wing with control surface. The main purpose of the virtual grid is to effectively treat the geometry of the crossed facial planes at the interface, and to convert a solid wall boundary condition into an interface condition, however, no fluid flow computations are conducted within the virtual grid. Navier Stokes computations were performed for transonic flow over a clipped delta wing with control surface, and the computed results compare well with the experimental data.展开更多
In order to improve efficiency of developing customized artificial joint, a virtual enterprise is organized based on the manufacturing grid. The application-oriented framework of the virtual enterprise is created for ...In order to improve efficiency of developing customized artificial joint, a virtual enterprise is organized based on the manufacturing grid. The application-oriented framework of the virtual enterprise is created for organization of the virtual enterprise. The manufacturing system of the virtual enterprise is built up based on the exterior grid and manufacturing subsystems of member enterprises are set up based on the interior grid. Furthermore, according to characteristic matching of manufacturing resources, the scheduling flow is studied in detail and the related scheduling strategies are established. The scheduling procedure is divided into distributed scheduling stage and local scheduling stage.Based on the manufacturing grid, the organization of the virtual enterprise for customized artificial joint and the corresponding scheduling strategies can be utilized to shorten developing cycle and reduce produce cost.展开更多
This paper addresses the problem of dynamic frequency control in a diesel-based mini-grid. It is shown that a virtual synchronous machine (VSM) can support dynamic frequency control by adding virtual inertia and dampi...This paper addresses the problem of dynamic frequency control in a diesel-based mini-grid. It is shown that a virtual synchronous machine (VSM) can support dynamic frequency control by adding virtual inertia and damping to the system. However, it is found that the typical formulation of damping power does not work properly when the grid forming gen-set operates in droop mode because of the unknown stabilization value of the grid frequency. As a solution to this problem, an estimator for the stabilization frequency that works in conjunction with the damping function of the VSM is proposed. Theoretical and experimental results provide evidence of a satisfactory performance of the proposed VSM with estimator for different values of the gen-set droop factor. The estimated stabilization frequency converges in approximately 2 s and the maximum frequency deviation during the transient is reduced in 34%, on average.展开更多
促使风电、光伏等分布式能源和电动汽车保有量快速增长。考虑电动汽车到电网(vehicle to grid,V2G)能量互动对多元化能源发电出力随机性及波动性的平抑作用,以及提升风/光电的消纳水平,采用虚拟电厂(virtual power plant,VPP)技术实现...促使风电、光伏等分布式能源和电动汽车保有量快速增长。考虑电动汽车到电网(vehicle to grid,V2G)能量互动对多元化能源发电出力随机性及波动性的平抑作用,以及提升风/光电的消纳水平,采用虚拟电厂(virtual power plant,VPP)技术实现对二者的统一协调管理,进而结合电动汽车全生命周期碳排放数量和分布式能源运行时碳排放数量,构建电动汽车参与的虚拟电厂整体多目标优化模型,采用粒子群优化算法对该模型进行求解,从而优化系统运行成本及碳排放成本。在结合真实数据配置的算例模型上进行实验分析,实验结果表明,提出的优化模型可以有效调度虚拟电厂各要素,充分发挥电动汽车V2G入网充放电带来的运行和碳排放收益,可以为低碳目标背景下电网系统的安全稳定运行提供技术参考。展开更多
针对电网电压不平衡下电流平衡及功率恒定问题,提出改进型光储虚拟同步发电机(virtual synchronous generator,VSG)控制策略,该策略通过引入虚拟阻抗技术和双二阶广义积分器(double second order generalized integrator,DSOGI)实现正...针对电网电压不平衡下电流平衡及功率恒定问题,提出改进型光储虚拟同步发电机(virtual synchronous generator,VSG)控制策略,该策略通过引入虚拟阻抗技术和双二阶广义积分器(double second order generalized integrator,DSOGI)实现正负序分量的有效分离,并基于瞬时功率理论优化电流和功率的协调控制,显著提高了系统在不平衡电网条件下的电流平衡性和功率稳定性。首先,构建基于电机瞬态模型的光伏储能VSG系统的数学模型,以深入理解和模拟VSG在实际电网中的动态行为。通过应用双二阶广义积分器技术,实现了正序与负序分量的有效分离,并基于瞬时功率理论和负序虚拟复阻抗技术,进一步实现电流和功率的协调控制,确保电流平衡及功率恒定。最后,利用MATLA/Simulink软件构建仿真模型,模拟光伏储能系统在不平衡电网状态下的运行情况,仿真结果表明所提控制策略显著提高了控制策略的精度和响应速度,可确保动态电网环境中的操作效率和可靠性。展开更多
基金Department of Navy Awards N00014-22-1-2001 and N00014-23-1-2124 issued by the Office of Naval Research。
文摘The power grid is undergoing a transformation from synchronous generators(SGs) toward inverter-based resources(IBRs). The stochasticity, asynchronicity, and limited-inertia characteristics of IBRs bring about challenges to grid resilience. Virtual power plants(VPPs) are emerging technologies to improve the grid resilience and advance the transformation. By judiciously aggregating geographically distributed energy resources(DERs) as individual electrical entities, VPPs can provide capacity and ancillary services to grid operations and participate in electricity wholesale markets. This paper aims to provide a concise overview of the concept and development of VPPs and the latest progresses in VPP operation, with the focus on VPP scheduling and control. Based on this overview, we identify a few potential challenges in VPP operation and discuss the opportunities of integrating the multi-agent system(MAS)-based strategy into the VPP operation to enhance its scalability, performance and resilience.
文摘The synchronous virtual machine uses inverter power to imitate the performance of the conventional synchronous machine.It also has the same inertia,damping,frequency,voltage regulation,and other external performance as the generator.It is the key technology to realize new energy grid connections’stable and reliable operation.This project studies a dynamic simulation model of an extensive new energy power system based on the virtual synchronous motor.A new energy storage method is proposed.The mathematical energy storage model is established by combining the fixed rotor model of a synchronous virtual machine with the charge-discharge power,state of charge,operation efficiency,dead zone,and inverter constraint.The rapid conversion of energy storage devices absorbs the excess instantaneous kinetic energy caused by interference.The branch transient of the critical cut set in the system can be confined to a limited area.Thus,the virtual synchronizer’s kinetic and potential energy can be efficiently converted into an instantaneous state.The simulation of power system analysis software package(PSASP)verifies the correctness of the theory and algorithm in this paper.This paper provides a theoretical basis for improving the transient stability of new energy-connected power grids.
文摘In order to improve efficiency of virtual enterprise, a manufacturing grid and multilevel manufacturing system of virtual enterprise is built up. When selecting member enterprises and task assignment based on the manufacturing grid, key activities are assigned to the suitable critical member enterprises by task decomposition, enterprise node searching and characteristic matching of manufacturing resources according to the characteristic matching strategy. By task merger, some ordinary activities are merged with corresponding key activities and assigned to corresponding critical member enterprises. However, the other ordinary activities are assigned to the related ordinary member enterprises with enterprise node searching and characteristic matching of manufacturing resources. Finally, an example of developing the artificial hip joint in the virtual enterprise is used to demonstrate that efficiency of the virtual enterprise is improved by using the manufacturing grid and the proposed strategies for member enterprise selection and task assignment.
基金supported in part by the National Natural Science Foundation of China under Grant 51537007。
文摘The brushless doubly-fed wind power system based on conventional power control strategies lacks ‘inertia’ and the ability to support grid,which leads to the decline of grid stability.Therefore,a control strategy of brushless doubly-fed reluctance generator(BDFRG) based on virtual synchronous generator(VSG) control is proposed to solve the problem in this paper.The output characteristics of BDFRG based on VSG are similar to a synchronous generator(SG),which can support the grid frequency and increase the system ‘inertia’.According to the mathematical model of BDFRG,the inner loop voltage source control of BDFRG is derived.In addition,the specific structure and parameter selection principle of outer loop VSG control are expounded.The voltage source control inner loop of BDFRG is combined with the VSG control outer loop to establish the overall architecture of BDFRG-VSG control strategy.Finally,the effectiveness and feasibility of the proposed strategy are verified in the simulation.
基金supported by the State Grid GEIGC Science and Technology Project under the “Research on Global Energy Transition Scenario and Model Development and Application under the New Pattern of Global Environmental Protection” framework(Grant No.52450018000W)
文摘The global water demand and supply situation is becoming increasingly severe due to water shortage and uneven distribution of water resources.The highest water demand in the energy sector is attributable to power generation.With cross-country and cross-continental power grid interconnections becoming a reality,electricity trading across countries and the creation of new opportunities for re-allocation of water resources are possible.This study expands the concept of virtual water and proposes a generalized virtual water flow in an interconnected power grid system to accurately estimate water resource benefits of clean power transmission from both the production and the consumption sides.By defining the water scarcity index as a price mechanism indicator,the benefits of water resources allocation through power grid interconnections are evaluated.Taking the Africa-Asia-Europe interconnection scenario as an example,the total water saving would amount to 88.95 million m^3 by 2030 and 337.8 million m^3 by 2050.This result shows that grid interconnections could promote the development of renewable energy and expand the benefits of available water resources.
基金Funded by Science Foundation of Guangxi Zhuang Autonomous Region (No.02336060) .
文摘Based on surface mount products virtual assembly technology,the solder joint reliability of plastic ball grid array (PBGA) was studied. Four process parameters,including the upper pad diameter,the stencil thickness,the chip weight on a single solder joint and the lower pad diameter were chose as four control factors. By using an L25(56) orthogonal array the PBGA solder joints which have 25 different process parameters’ levels combinations were designed. The numerical models of all the 25 PBGA solder joints were developed and the finite element analysis models were setup. The stress and strain distribution within the PBGA solder joints under thermal cycles were studied by finite element analysis,and the thermal fatigue life of PBGA solder joint was calculated using Coffin-Manson equation. Based on the calculated thermal fatigue life results,the range analysis was performed. The results of study show that that the impact sequence of the four factors from high to low on the fatigue life of PBGA solder joints are the stencil thickness,the upper pad diameter,the lower pad diameter and the chip weight on a single solder joint; the best level combination ofprocess parameters that results in the longest fatigue life is the lower pad diameter of 0.6 mm,the stencil thickness of 0.175 mm,the chip weight on asingle solder joint of 28×10 -5 N and the upper pad diameter of 0.5 mm.
文摘The virtual grid method used in the embedding technique to solve the problem of finding interpolating cells of the inner and outer boundary points near joint regions was developed for calculating the viscous flows around a wing with control surface. The main purpose of the virtual grid is to effectively treat the geometry of the crossed facial planes at the interface, and to convert a solid wall boundary condition into an interface condition, however, no fluid flow computations are conducted within the virtual grid. Navier Stokes computations were performed for transonic flow over a clipped delta wing with control surface, and the computed results compare well with the experimental data.
文摘In order to improve efficiency of developing customized artificial joint, a virtual enterprise is organized based on the manufacturing grid. The application-oriented framework of the virtual enterprise is created for organization of the virtual enterprise. The manufacturing system of the virtual enterprise is built up based on the exterior grid and manufacturing subsystems of member enterprises are set up based on the interior grid. Furthermore, according to characteristic matching of manufacturing resources, the scheduling flow is studied in detail and the related scheduling strategies are established. The scheduling procedure is divided into distributed scheduling stage and local scheduling stage.Based on the manufacturing grid, the organization of the virtual enterprise for customized artificial joint and the corresponding scheduling strategies can be utilized to shorten developing cycle and reduce produce cost.
文摘This paper addresses the problem of dynamic frequency control in a diesel-based mini-grid. It is shown that a virtual synchronous machine (VSM) can support dynamic frequency control by adding virtual inertia and damping to the system. However, it is found that the typical formulation of damping power does not work properly when the grid forming gen-set operates in droop mode because of the unknown stabilization value of the grid frequency. As a solution to this problem, an estimator for the stabilization frequency that works in conjunction with the damping function of the VSM is proposed. Theoretical and experimental results provide evidence of a satisfactory performance of the proposed VSM with estimator for different values of the gen-set droop factor. The estimated stabilization frequency converges in approximately 2 s and the maximum frequency deviation during the transient is reduced in 34%, on average.
文摘促使风电、光伏等分布式能源和电动汽车保有量快速增长。考虑电动汽车到电网(vehicle to grid,V2G)能量互动对多元化能源发电出力随机性及波动性的平抑作用,以及提升风/光电的消纳水平,采用虚拟电厂(virtual power plant,VPP)技术实现对二者的统一协调管理,进而结合电动汽车全生命周期碳排放数量和分布式能源运行时碳排放数量,构建电动汽车参与的虚拟电厂整体多目标优化模型,采用粒子群优化算法对该模型进行求解,从而优化系统运行成本及碳排放成本。在结合真实数据配置的算例模型上进行实验分析,实验结果表明,提出的优化模型可以有效调度虚拟电厂各要素,充分发挥电动汽车V2G入网充放电带来的运行和碳排放收益,可以为低碳目标背景下电网系统的安全稳定运行提供技术参考。
文摘针对电网电压不平衡下电流平衡及功率恒定问题,提出改进型光储虚拟同步发电机(virtual synchronous generator,VSG)控制策略,该策略通过引入虚拟阻抗技术和双二阶广义积分器(double second order generalized integrator,DSOGI)实现正负序分量的有效分离,并基于瞬时功率理论优化电流和功率的协调控制,显著提高了系统在不平衡电网条件下的电流平衡性和功率稳定性。首先,构建基于电机瞬态模型的光伏储能VSG系统的数学模型,以深入理解和模拟VSG在实际电网中的动态行为。通过应用双二阶广义积分器技术,实现了正序与负序分量的有效分离,并基于瞬时功率理论和负序虚拟复阻抗技术,进一步实现电流和功率的协调控制,确保电流平衡及功率恒定。最后,利用MATLA/Simulink软件构建仿真模型,模拟光伏储能系统在不平衡电网状态下的运行情况,仿真结果表明所提控制策略显著提高了控制策略的精度和响应速度,可确保动态电网环境中的操作效率和可靠性。