A virtual instrument system is proposed to test the performance parameters of local-ventilator installed under coal mines,which can do ventilator parameter acquisition automatically,as well as plot and analyze the ven...A virtual instrument system is proposed to test the performance parameters of local-ventilator installed under coal mines,which can do ventilator parameter acquisition automatically,as well as plot and analyze the ventilator performance curve.The whole system is designed using the virtual instrument technology combined with network technology based on Labview platform.Experimental results show that it can monitor and evaluate ventilator’s performance parameters automatically and efficiently,which provides critical information for ventilator safety under coal mine.展开更多
This paper takes advantage of the depth camera of somatosensory kinect and sensors to implement gesture recognition and design a virtual instrument system. As long as the user waves his arm without the help of other e...This paper takes advantage of the depth camera of somatosensory kinect and sensors to implement gesture recognition and design a virtual instrument system. As long as the user waves his arm without the help of other equipments, our system can automatically recognize the hand gesture and make suitable sound. In order to achieve depth camera's detection of hands movement,this paper introduce the depth imaging technology Light Coding and bone tracking technology to obtain the actual position information and hand movement information of the human body. Feet movement detection uses sensor technology, different stampede strength outputs different digital number after AD conversion so that the intensity can be controlled. A series of experiments show that the system has good fluency and practicality and increased the fun of playing instruments.展开更多
A new concept called intelligent virtual control (IVC), which can be drivenby measuring functions, is put forward. This small 'intelligent measurement instrument unit (IMIU)',carrying with functions of instrum...A new concept called intelligent virtual control (IVC), which can be drivenby measuring functions, is put forward. This small 'intelligent measurement instrument unit (IMIU)',carrying with functions of instrument, consists of different types of intelligent virtualinstrument (IVI) through individual components together as building blocks and can be displayeddirectly on the computer screen. This is a new concept of measuring instrument, and also animportant breakthrough after virtual instrument (VI). Virtual control makes instrument resourcesobtain further exploitation. It brings about a fundamental change to the design and manufacturingmode. The instrument therefore, can not only be produced directly inside a PC, but the product isinvolved in the 'green product' system. So far, all the present digital instruments will grow to bereplaced by intelligent control with green characteristics.展开更多
Intelligent virtual control (IVC) is an intelligent measurement instrumentunit with the function of actual measurement instruments, and the unit can be used as basic buildingblock for a variety of more complex virtual...Intelligent virtual control (IVC) is an intelligent measurement instrumentunit with the function of actual measurement instruments, and the unit can be used as basic buildingblock for a variety of more complex virtual measurement instruments on a PC. IVC is a furtheradvancement from virtual instrument (VI), and it fuses the function modules and the controls modulesso that the relationship between the functions and controls of an instrument is imbedded in one ormore units. The design, implementation and optimization methods of IVCs are introduced. The computersoftware representation of IVCs is discussed. An example of an actual VI constructed with thebuilding blocks of IVCs is given.展开更多
Based on the recently quick-developing time-frequency analysis (TFA)technique and virtual instrument (VI) technique, a virtual instrument in characteristic analysis ofrotating machinery is researched and developed suc...Based on the recently quick-developing time-frequency analysis (TFA)technique and virtual instrument (VI) technique, a virtual instrument in characteristic analysis ofrotating machinery is researched and developed successfully. By utilizing instantaneous frequencyestimation (IFE) theoretics of TFA technique, and based on IFE of peak searching on thetime-frequency spectrum, order analysis (OA) functions is put forward and implemented, such as orderspectrum, order spectrum matrix, order tracking, order tracking filtering, and order componentextraction, etc. Unlike the home and abroad existing popular characteristic analyzers, which needkey phasing devices such as shaft encoder, phase-locked loop (PLL), phase-locked multiple frequency,tachometer, etc, to implement constant angle sampling directly or indirectly, whereas thisinstrument only uses the vibration signal of rotating machinery to carry out OA. This instrumentmakes up the shortage of these traditional instruments in analyzing the non-stationary signal ofrun-up and run-down process of rotating machinery. Therefore, it is a great breakthrough for theexisting order analyzers.展开更多
After analyzing and comparing the traditional automobile instrument,the onboard instrument based on virtual instrument technology is designed in this paper.The PC/104 computer was employed as the core processing unit ...After analyzing and comparing the traditional automobile instrument,the onboard instrument based on virtual instrument technology is designed in this paper.The PC/104 computer was employed as the core processing unit of the onbaard in- strument,and the several intelligent data acquisition nodes are set and connected by the CAN bus,through which the nodes can com- municate with the core processing unit.The information of the vehicle’s working condition can be displayed synthetically by adopt- ing virtual instrument technology.When the working condition goes beyond its limit,the system can emit an alarm,record and storage the abnormal condition automatically,and suggest how to deal with the abnormity urgently.The development background and design idea of onboard information system were elaborated in the paper.The software,the hardware architecture and the principle of onboard information system were introduced in detail.展开更多
A novel three-dimensional(3D) imaging lidar system which is based on a virtual instrument technique is introduced in this paper. The main characteristics of the system include: the capability of modeling a 3D objec...A novel three-dimensional(3D) imaging lidar system which is based on a virtual instrument technique is introduced in this paper. The main characteristics of the system include: the capability of modeling a 3D object in accordance with the actual one by connecting to a geographic information system(GIS), and building the scene for the lidar experiment including the simulation environment. The simulation environment consists of four parts: laser pulse, atmospheric transport,target interaction, and receiving unit. Besides, the system provides an interface for the on-site experiment. In order to process the full waveform, we adopt the combination of pulse accumulation and wavelet denoising for signal enhancement.We also propose an optimized algorithm for data decomposition: the V-L decomposition method, which combines Vondrak smoothing and laser-template based fitting. Compared with conventional Gaussian decomposition, the new method brings an improvement in both precision and resolution of data decomposition. After applying V-L decomposition to the lidar system, we present the 3D reconstructed model to demonstrate the decomposition method.展开更多
A virtual instrument(Ⅵ) was developed to monitor the technological parameters in the process of brush plating, including coating thickness, brush-plating current, current density, deposition rate, and brush plating v...A virtual instrument(Ⅵ) was developed to monitor the technological parameters in the process of brush plating, including coating thickness, brush-plating current, current density, deposition rate, and brush plating voltage. Meanwhile two approaches were presented to improve the measurement accuracy of coating thickness. One of them aims at eliminating the random interferences by moving average filtering; while the other manages to calculate the quantity of electricity consumed accurately with rectangular integration. With these two approaches, the coating thickness can be measured in real time with higher accuracy than the voltage-frequency conversion method. During the process of plating all the technological parameters are displayed visually on the front panel of the Ⅵ. Once brush current or current density overruns the limited values, or when the coating thickness reaches the objective value, the virtual will alarm. With this Ⅵ, the solution consumption can be decreased and the operating efficiency is improved.展开更多
Through investigating intelligent diagnosis method of Computational Intelligence (CI) and studying its application in fault feature extraction, a gear fault detection and Virtual Instrument Diagnostic System is develo...Through investigating intelligent diagnosis method of Computational Intelligence (CI) and studying its application in fault feature extraction, a gear fault detection and Virtual Instrument Diagnostic System is developed by using the two hybrid programming method which combines both advantages of VC++ and MATLAB. The interface is designed by VC++ and the calculation of test data, signal processing and graphical display are completed by MATLAB. The pro-gram converted from M-file to VC++ is completed by interface software, and a various multi-functional gear fault di-agnosis software system is successfully obtained. The software system, which has many functions including the intro-duction of gear vibration signals, signal processing, graphical display, fault detection and diagnosis, monitoring and so on, especially, the ability of diagnosing gear faults. The method has an important application in the field of mechanical fault diagnosis.展开更多
文摘A virtual instrument system is proposed to test the performance parameters of local-ventilator installed under coal mines,which can do ventilator parameter acquisition automatically,as well as plot and analyze the ventilator performance curve.The whole system is designed using the virtual instrument technology combined with network technology based on Labview platform.Experimental results show that it can monitor and evaluate ventilator’s performance parameters automatically and efficiently,which provides critical information for ventilator safety under coal mine.
文摘This paper takes advantage of the depth camera of somatosensory kinect and sensors to implement gesture recognition and design a virtual instrument system. As long as the user waves his arm without the help of other equipments, our system can automatically recognize the hand gesture and make suitable sound. In order to achieve depth camera's detection of hands movement,this paper introduce the depth imaging technology Light Coding and bone tracking technology to obtain the actual position information and hand movement information of the human body. Feet movement detection uses sensor technology, different stampede strength outputs different digital number after AD conversion so that the intensity can be controlled. A series of experiments show that the system has good fluency and practicality and increased the fun of playing instruments.
基金This project is supported by National Natural Science Foundation of China(No.50135050).
文摘A new concept called intelligent virtual control (IVC), which can be drivenby measuring functions, is put forward. This small 'intelligent measurement instrument unit (IMIU)',carrying with functions of instrument, consists of different types of intelligent virtualinstrument (IVI) through individual components together as building blocks and can be displayeddirectly on the computer screen. This is a new concept of measuring instrument, and also animportant breakthrough after virtual instrument (VI). Virtual control makes instrument resourcesobtain further exploitation. It brings about a fundamental change to the design and manufacturingmode. The instrument therefore, can not only be produced directly inside a PC, but the product isinvolved in the 'green product' system. So far, all the present digital instruments will grow to bereplaced by intelligent control with green characteristics.
基金This project is supported by National Natural Science Foundation of China (No.50135050).
文摘Intelligent virtual control (IVC) is an intelligent measurement instrumentunit with the function of actual measurement instruments, and the unit can be used as basic buildingblock for a variety of more complex virtual measurement instruments on a PC. IVC is a furtheradvancement from virtual instrument (VI), and it fuses the function modules and the controls modulesso that the relationship between the functions and controls of an instrument is imbedded in one ormore units. The design, implementation and optimization methods of IVCs are introduced. The computersoftware representation of IVCs is discussed. An example of an actual VI constructed with thebuilding blocks of IVCs is given.
文摘Based on the recently quick-developing time-frequency analysis (TFA)technique and virtual instrument (VI) technique, a virtual instrument in characteristic analysis ofrotating machinery is researched and developed successfully. By utilizing instantaneous frequencyestimation (IFE) theoretics of TFA technique, and based on IFE of peak searching on thetime-frequency spectrum, order analysis (OA) functions is put forward and implemented, such as orderspectrum, order spectrum matrix, order tracking, order tracking filtering, and order componentextraction, etc. Unlike the home and abroad existing popular characteristic analyzers, which needkey phasing devices such as shaft encoder, phase-locked loop (PLL), phase-locked multiple frequency,tachometer, etc, to implement constant angle sampling directly or indirectly, whereas thisinstrument only uses the vibration signal of rotating machinery to carry out OA. This instrumentmakes up the shortage of these traditional instruments in analyzing the non-stationary signal ofrun-up and run-down process of rotating machinery. Therefore, it is a great breakthrough for theexisting order analyzers.
文摘After analyzing and comparing the traditional automobile instrument,the onboard instrument based on virtual instrument technology is designed in this paper.The PC/104 computer was employed as the core processing unit of the onbaard in- strument,and the several intelligent data acquisition nodes are set and connected by the CAN bus,through which the nodes can com- municate with the core processing unit.The information of the vehicle’s working condition can be displayed synthetically by adopt- ing virtual instrument technology.When the working condition goes beyond its limit,the system can emit an alarm,record and storage the abnormal condition automatically,and suggest how to deal with the abnormity urgently.The development background and design idea of onboard information system were elaborated in the paper.The software,the hardware architecture and the principle of onboard information system were introduced in detail.
基金Project supported by the National Natural Science Foundation of China(Grant No.608320036)
文摘A novel three-dimensional(3D) imaging lidar system which is based on a virtual instrument technique is introduced in this paper. The main characteristics of the system include: the capability of modeling a 3D object in accordance with the actual one by connecting to a geographic information system(GIS), and building the scene for the lidar experiment including the simulation environment. The simulation environment consists of four parts: laser pulse, atmospheric transport,target interaction, and receiving unit. Besides, the system provides an interface for the on-site experiment. In order to process the full waveform, we adopt the combination of pulse accumulation and wavelet denoising for signal enhancement.We also propose an optimized algorithm for data decomposition: the V-L decomposition method, which combines Vondrak smoothing and laser-template based fitting. Compared with conventional Gaussian decomposition, the new method brings an improvement in both precision and resolution of data decomposition. After applying V-L decomposition to the lidar system, we present the 3D reconstructed model to demonstrate the decomposition method.
基金Project (50235030) supported by the National Natural Science Foundation of China
文摘A virtual instrument(Ⅵ) was developed to monitor the technological parameters in the process of brush plating, including coating thickness, brush-plating current, current density, deposition rate, and brush plating voltage. Meanwhile two approaches were presented to improve the measurement accuracy of coating thickness. One of them aims at eliminating the random interferences by moving average filtering; while the other manages to calculate the quantity of electricity consumed accurately with rectangular integration. With these two approaches, the coating thickness can be measured in real time with higher accuracy than the voltage-frequency conversion method. During the process of plating all the technological parameters are displayed visually on the front panel of the Ⅵ. Once brush current or current density overruns the limited values, or when the coating thickness reaches the objective value, the virtual will alarm. With this Ⅵ, the solution consumption can be decreased and the operating efficiency is improved.
文摘Through investigating intelligent diagnosis method of Computational Intelligence (CI) and studying its application in fault feature extraction, a gear fault detection and Virtual Instrument Diagnostic System is developed by using the two hybrid programming method which combines both advantages of VC++ and MATLAB. The interface is designed by VC++ and the calculation of test data, signal processing and graphical display are completed by MATLAB. The pro-gram converted from M-file to VC++ is completed by interface software, and a various multi-functional gear fault di-agnosis software system is successfully obtained. The software system, which has many functions including the intro-duction of gear vibration signals, signal processing, graphical display, fault detection and diagnosis, monitoring and so on, especially, the ability of diagnosing gear faults. The method has an important application in the field of mechanical fault diagnosis.