In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications...In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications.Therefore,it is essential to develop effective models for Virtual Machine(VM)allocation and task scheduling in fog computing environments.Effective task scheduling,VM migration,and allocation,altogether optimize the use of computational resources across different fog nodes.This process ensures that the tasks are executed with minimal energy consumption,which reduces the chances of resource bottlenecks.In this manuscript,the proposed framework comprises two phases:(i)effective task scheduling using a fractional selectivity approach and(ii)VM allocation by proposing an algorithm by the name of Fitness Sharing Chaotic Particle Swarm Optimization(FSCPSO).The proposed FSCPSO algorithm integrates the concepts of chaos theory and fitness sharing that effectively balance both global exploration and local exploitation.This balance enables the use of a wide range of solutions that leads to minimal total cost and makespan,in comparison to other traditional optimization algorithms.The FSCPSO algorithm’s performance is analyzed using six evaluation measures namely,Load Balancing Level(LBL),Average Resource Utilization(ARU),total cost,makespan,energy consumption,and response time.In relation to the conventional optimization algorithms,the FSCPSO algorithm achieves a higher LBL of 39.12%,ARU of 58.15%,a minimal total cost of 1175,and a makespan of 85.87 ms,particularly when evaluated for 50 tasks.展开更多
The demand for cloud computing has increased manifold in the recent past.More specifically,on-demand computing has seen a rapid rise as organizations rely mostly on cloud service providers for their day-to-day computi...The demand for cloud computing has increased manifold in the recent past.More specifically,on-demand computing has seen a rapid rise as organizations rely mostly on cloud service providers for their day-to-day computing needs.The cloud service provider fulfills different user requirements using virtualization-where a single physical machine can host multiple VirtualMachines.Each virtualmachine potentially represents a different user environment such as operating system,programming environment,and applications.However,these cloud services use a large amount of electrical energy and produce greenhouse gases.To reduce the electricity cost and greenhouse gases,energy efficient algorithms must be designed.One specific area where energy efficient algorithms are required is virtual machine consolidation.With virtualmachine consolidation,the objective is to utilize the minimumpossible number of hosts to accommodate the required virtual machines,keeping in mind the service level agreement requirements.This research work formulates the virtual machine migration as an online problem and develops optimal offline and online algorithms for the single host virtual machine migration problem under a service level agreement constraint for an over-utilized host.The online algorithm is analyzed using a competitive analysis approach.In addition,an experimental analysis of the proposed algorithm on real-world data is conducted to showcase the improved performance of the proposed algorithm against the benchmark algorithms.Our proposed online algorithm consumed 25%less energy and performed 43%fewer migrations than the benchmark algorithms.展开更多
Virtualization is the backbone of cloud computing,which is a developing and widely used paradigm.Byfinding and merging identical memory pages,memory deduplication improves memory efficiency in virtualized systems.Kern...Virtualization is the backbone of cloud computing,which is a developing and widely used paradigm.Byfinding and merging identical memory pages,memory deduplication improves memory efficiency in virtualized systems.Kernel Same Page Merging(KSM)is a Linux service for memory pages sharing in virtualized environments.Memory deduplication is vulnerable to a memory disclosure attack,which uses covert channel establishment to reveal the contents of other colocated virtual machines.To avoid a memory disclosure attack,sharing of identical pages within a single user’s virtual machine is permitted,but sharing of contents between different users is forbidden.In our proposed approach,virtual machines with similar operating systems of active domains in a node are recognised and organised into a homogenous batch,with memory deduplication performed inside that batch,to improve the memory pages sharing efficiency.When compared to memory deduplication applied to the entire host,implementation details demonstrate a significant increase in the number of pages shared when memory deduplication applied batch-wise and CPU(Central processing unit)consumption also increased.展开更多
Cloud data centers face the largest energy consumption.In order to save energy consumption in cloud data centers,cloud service providers adopt a virtual machine migration strategy.In this paper,we propose an efficient...Cloud data centers face the largest energy consumption.In order to save energy consumption in cloud data centers,cloud service providers adopt a virtual machine migration strategy.In this paper,we propose an efficient virtual machine placement strategy(VMP-SI)based on virtual machine selection and integration.Our proposed VMP-SI strategy divides the migration process into three phases:physical host state detection,virtual machine selection and virtual machine placement.The local regression robust(LRR)algorithm and minimum migration time(MMT)policy are individual used in the first and section phase,respectively.Then we design a virtual machine migration strategy that integrates the process of virtual machine selection and placement,which can ensure a satisfactory utilization efficiency of the hardware resources of the active physical host.Experimental results show that our proposed method is better than the approach in Cloudsim under various performance metrics.展开更多
Current orchestration and choreography process engines only serve with dedicate process languages.To solve these problems,an Event-driven Process Execution Model(EPEM) was developed.Formalization and mapping principle...Current orchestration and choreography process engines only serve with dedicate process languages.To solve these problems,an Event-driven Process Execution Model(EPEM) was developed.Formalization and mapping principles of the model were presented to guarantee the correctness and efficiency for process transformation.As a case study,the EPEM descriptions of Web Services Business Process Execution Language(WS-BPEL) were represented and a Process Virtual Machine(PVM)-OncePVM was implemented in compliance with the EPEM.展开更多
This paper interprets the essence of XEN and hardware virtualization technology, which make the virtual machine technology become the focus of people's attention again because of its impressive performance. The secur...This paper interprets the essence of XEN and hardware virtualization technology, which make the virtual machine technology become the focus of people's attention again because of its impressive performance. The security challenges of XEN are mainly researched from the pointes of view: security bottleneck, security isolation and share, life-cycle, digital copyright protection, trusted virtual machine and managements, etc. These security problems significantly affect the security of the virtual machine system based on XEN. At the last, these security measures are put forward, which will be a useful instruction on enhancing XEN security in the future.展开更多
Cloud computing represents a novel computing model in the contemporary technology world. In a cloud system, the com- puting power of virtual machines (VMs) and network status can greatly affect the completion time o...Cloud computing represents a novel computing model in the contemporary technology world. In a cloud system, the com- puting power of virtual machines (VMs) and network status can greatly affect the completion time of data intensive tasks. How- ever, most of the current resource allocation policies focus only on network conditions and physical hosts. And the computing power of VMs is largely ignored. This paper proposes a comprehensive resource allocation policy which consists of a data intensive task scheduling algorithm that takes account of computing power of VMs and a VM allocation policy that considers bandwidth between storage nodes and hosts. The VM allocation policy includes VM placement and VM migration algorithms. Related simulations show that the proposed algorithms can greatly reduce the task comple- tion time and keep good load balance of physical hosts at the same time.展开更多
In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the...In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the energy consumption and(processor) resource utilization, is proposed. In TESA, according to load, hosts in data centers are divided into four classes, that is,host with light load, host with proper load, host with middle load and host with heavy load. By defining TESA, VMs on lightly loaded host or VMs on heavily loaded host are migrated to another host with proper load; VMs on properly loaded host or VMs on middling loaded host are kept constant. Then, based on the TESA, five kinds of VM selection policies(minimization of migrations policy based on TESA(MIMT), maximization of migrations policy based on TESA(MAMT), highest potential growth policy based on TESA(HPGT), lowest potential growth policy based on TESA(LPGT) and random choice policy based on TESA(RCT)) are presented, and MIMT is chosen as the representative policy through experimental comparison. Finally, five research directions are put forward on future energy management. The results of simulation indicate that, as compared with single threshold(ST) algorithm and minimization of migrations(MM) algorithm, MIMT significantly improves the energy efficiency in data centers.展开更多
With analysis of limitations Trusted Computing Group (TCG) has encountered, we argued that virtual machine monitor (VMM) is the appropriate architecture for implementing TCG specification. Putting together the VMM...With analysis of limitations Trusted Computing Group (TCG) has encountered, we argued that virtual machine monitor (VMM) is the appropriate architecture for implementing TCG specification. Putting together the VMM architecture, TCG hardware and application-oriented "thin" virtual machine (VM), Trusted VMM-based security architecture is present in this paper with the character of reduced and distributed trusted computing base (TCB). It provides isolation and integrity guarantees based on which general security requirements can be satisfied.展开更多
With the rapid development of big data and artificial intelligence(AI),the cloud platform architecture system is constantly developing,optimizing,and improving.As such,new applications,like deep computing and high-per...With the rapid development of big data and artificial intelligence(AI),the cloud platform architecture system is constantly developing,optimizing,and improving.As such,new applications,like deep computing and high-performance computing,require enhanced computing power.To meet this requirement,a non-uniform memory access(NUMA)configuration method is proposed for the cloud computing system according to the affinity,adaptability,and availability of the NUMA architecture processor platform.The proposed method is verified based on the test environment of a domestic central processing unit(CPU).展开更多
At present,there are few security models which control the communication between virtual machines (VMs).Moreover,these models are not applicable to multi-level security (MLS).In order to implement mandatory access con...At present,there are few security models which control the communication between virtual machines (VMs).Moreover,these models are not applicable to multi-level security (MLS).In order to implement mandatory access control (MAC) and MLS in virtual machine system,this paper designs Virt-BLP model,which is based on BLP model.For the distinction between virtual machine system and non-virtualized system,we build elements and security axioms of Virt-BLP model by modifying those of BLP.Moreover,comparing with BLP,the number of state transition rules of Virt-BLP is reduced accordingly and some rules can only be enforced by trusted subject.As a result,Virt-BLP model supports MAC and partial discretionary access control (DAC),well satisfying the requirement of MLS in virtual machine system.As space is limited,the implementation of our MAC framework will be shown in a continuation.展开更多
In recent years,vehicular cloud computing(VCC)has gained vast attention for providing a variety of services by creating virtual machines(VMs).These VMs use the resources that are present in modern smart vehicles.Many ...In recent years,vehicular cloud computing(VCC)has gained vast attention for providing a variety of services by creating virtual machines(VMs).These VMs use the resources that are present in modern smart vehicles.Many studies reported that some of these VMs hosted on the vehicles are overloaded,whereas others are underloaded.As a circumstance,the energy consumption of overloaded vehicles is drastically increased.On the other hand,underloaded vehicles are also drawing considerable energy in the underutilized situation.Therefore,minimizing the energy consumption of the VMs that are hosted by both overloaded and underloaded is a challenging issue in the VCC environment.The proper and efcient utilization of the vehicle’s resources can reduce energy consumption signicantly.One of the solutions is to improve the resource utilization of underloaded vehicles by migrating the over-utilized VMs of overloaded vehicles.On the other hand,a large number of VM migrations can lead to wastage of energy and time,which ultimately degrades the performance of the VMs.This paper addresses the issues mentioned above by introducing a resource management algorithm,called resource utilization-aware VM migration(RU-VMM)algorithm,to distribute the loads among the overloaded and underloaded vehicles,such that energy consumption is minimized.RU-VMM monitors the trend of resource utilization to select the source and destination vehicles within a predetermined threshold for the process of VM migration.It ensures that any vehicles’resource utilization should not exceed the threshold before or after the migration.RU-VMM also tries to avoid unnecessary VM migrations between the vehicles.RU-VMM is extensively simulated and tested using nine datasets.The results are carried out using three performance metrics,namely number of nal source vehicles(nfsv),percentage of successful VM migrations(psvmm)and percentage of dropped VM migrations(pdvmm),and compared with threshold-based algorithm(i.e.,threshold)and cumulative sum(CUSUM)algorithm.The comparisons show that the RU-VMM algorithm performs better than the existing algorithms.RU-VMM algorithm improves 16.91%than the CUSUM algorithm and 71.59%than the threshold algorithm in terms of nfsv,and 20.62%and 275.34%than the CUSUM and threshold algorithms in terms of psvmm.展开更多
Quantitative security metrics are desirable for measuring the performance of information security controls. Security metrics help to make functional and business decisions for improving the performance and cost of the...Quantitative security metrics are desirable for measuring the performance of information security controls. Security metrics help to make functional and business decisions for improving the performance and cost of the security controls. However, defining enterprise-level security metrics has already been listed as one of the hard problems in the Info Sec Research Council's hard problems list. Almost all the efforts in defining absolute security metrics for the enterprise security have not been proved fruitful. At the same time, with the maturity of the security industry, there has been a continuous emphasis from the regulatory bodies on establishing measurable security metrics. This paper addresses this need and proposes a relative security metric model that derives three quantitative security metrics named Attack Resiliency Measure(ARM), Performance Improvement Factor(PIF), and Cost/Benefit Measure(CBM) for measuring the performance of the security controls. For the effectiveness evaluation of the proposed security metrics, we took the secure virtual machine(VM) migration protocol as the target of assessment. The virtual-ization technologies are rapidly changing the landscape of the computing world. Devising security metrics for virtualized environment is even more challenging. As secure virtual machine migration is an evolving area and no standard protocol is available specifically for secure VM migration. This paper took the secure virtual machine migration protocol as the target of assessment and applied the proposed relative security metric model for measuring the Attack Resiliency Measure, Performance Improvement Factor, and Cost/Benefit Measure of the secure VM migration protocol.展开更多
In the cloud data centers,how to map virtual machines(VMs) on physical machines(PMs) to reduce the energy consumption is becoming one of the major issues,and the existing VM scheduling schemes are mostly to reduce ene...In the cloud data centers,how to map virtual machines(VMs) on physical machines(PMs) to reduce the energy consumption is becoming one of the major issues,and the existing VM scheduling schemes are mostly to reduce energy consumption by optimizing the utilization of physical servers or network elements.However,the aggressive consolidation of these resources may lead to network performance degradation.In view of this,this paper proposes a two-stage VM scheduling scheme:(1) We propose a static VM placement scheme to minimize the number of activating PMs and network elements to reduce the energy consumption;(2) In the premise of minimizing the migration costs,we propose a dynamic VM migration scheme to minimize the maximum link utilization to improve the network performance.This scheme makes a tradeoff between energy efficiency and network performance.We design a new twostage heuristic algorithm for a solution,and the simulations show that our solution achieves good results.展开更多
With the advent of the era of cloud computing, the high energy consumption of cloud computing data centers has become a prominent problem, and how to reduce the energy consumption of cloud computing data center and im...With the advent of the era of cloud computing, the high energy consumption of cloud computing data centers has become a prominent problem, and how to reduce the energy consumption of cloud computing data center and improve the efficiency of data center has become the research focus of researchers all the world. In a cloud environment, virtual machine consolidation(VMC) is an effective strategy that can improve the energy efficiency. However, at the same time, in the process of virtual machine consolidation, we need to deal with the tradeoff between energy consumption and excellent service performance to meet service level agreement(SLA). In this paper, we propose a new virtual machine consolidation framework for achieving better energy efficiency-Improved Underloaded Decision(IUD) algorithm and Minimum Average Utilization Difference(MAUD) algorithm. Finally, based on real workload data on Planet Lab, experiments have been done with the cloud simulation platform Cloud Sim. The experimental result shows that the proposed algorithm can reduce the energy consumption and SLA violation of data centers compared with existing algorithms, improving the energy efficiency of data centers.展开更多
Cloud computing is becoming a key factor in the market day by day. Therefore, many companies are investing or going to invest in this sector for development of large data centers. These data centers not only consume m...Cloud computing is becoming a key factor in the market day by day. Therefore, many companies are investing or going to invest in this sector for development of large data centers. These data centers not only consume more energy but also produce greenhouse gases. Because of large amount of power consumption, data center providers go for different types of power generator to increase the profit margin which indirectly affects the environment. Several studies are carried out to reduce the power consumption of a data center. One of the techniques to reduce power consumption is virtualization. After several studies, it is stated that hardware plays a very important role. As the load increases, the power consumption of the CPU is also increased. Therefore, by extending the study of virtualization to reduce the power consumption, a hardware-based algorithm for virtual machine provisioning in a private cloud can significantly improve the performance by considering hardware as one of the important factors.展开更多
This paper sums up four security factors after analyzing co-residency threats caused by the special multitenant environment in the cloud.To secure the factors,a multiway dynamic trust chain transfer model was proposed...This paper sums up four security factors after analyzing co-residency threats caused by the special multitenant environment in the cloud.To secure the factors,a multiway dynamic trust chain transfer model was proposed on the basis of a measurement interactive virtual machine and current behavior to protect the integrity of the system.A trust chain construction module is designed in a virtual machine monitor.Through dynamic monitoring,it achieves the purpose of transferring integrity between virtual machine.A cloud system with a trust authentication function is implemented on the basis of the model,and its practicability is shown.展开更多
In the paper,we investigate the heterogeneous resource allocation scheme for virtual machines with slicing technology in the 5G/B5G edge computing environment.In general,the different slices for different task scenari...In the paper,we investigate the heterogeneous resource allocation scheme for virtual machines with slicing technology in the 5G/B5G edge computing environment.In general,the different slices for different task scenarios exist in the same edge layer synchronously.A lot of researches reveal that the virtual machines of different slices indicate strong heterogeneity with different reserved resource granularity.In the condition,the allocation process is a NP hard problem and difficult for the actual demand of the tasks in the strongly heterogeneous environment.Based on the slicing and container concept,we propose the resource allocation scheme named Two-Dimension allocation and correlation placement Scheme(TDACP).The scheme divides the resource allocation and management work into three stages in this paper:In the first stage,it designs reasonably strategy to allocate resources to different task slices according to demand.In the second stage,it establishes an equivalent relationship between the virtual machine reserved resource capacity and the Service-Level Agreement(SLA)of the virtual machine in different slices.In the third stage,it designs a placement optimization strategy to schedule the equivalent virtual machines in the physical servers.Thus,it is able to establish a virtual machine placement strategy with high resource utilization efficiency and low time cost.The simulation results indicate that the proposed scheme is able to suppress the problem of uneven resource allocation which is caused by the pure preemptive scheduling strategy.It adjusts the number of equivalent virtual machines based on the SLA range of system parameter,and reduces the SLA probability of physical servers effectively based on resource utilization time sampling series linear.The scheme is able to guarantee resource allocation and management work orderly and efficiently in the edge datacenter slices.展开更多
Cloud Computing provides various services to the customer in aflex-ible and reliable manner.Virtual Machines(VM)are created from physical resources of the data center for handling huge number of requests as a task.Thes...Cloud Computing provides various services to the customer in aflex-ible and reliable manner.Virtual Machines(VM)are created from physical resources of the data center for handling huge number of requests as a task.These tasks are executed in the VM at the data center which needs excess hosts for satis-fying the customer request.The VM migration solves this problem by migrating the VM from one host to another host and makes the resources available at any time.This process is carried out based on various algorithms which follow a pre-defined capacity of source VM leads to the capacity issue at the destination VM.The proposed VM migration technique performs the migration process based on the request of the requesting host machine.This technique can perform in three ways namely single VM migration,Multiple VM migration and Cluster VM migration.Common Deployment Manager(CDM)is used to support through negotiation that happens across the source host and destination host for providing the high quality service to their customer.The VM migration requests are handled with an exposure of the source host capabilities.The proposed analysis also uses the retired instructions with execution by the hypervisor to achieve high reliabil-ity.The objective of the proposed technique is to perform a VM migration process based on the prior knowledge of the resource availability in the target VM.展开更多
基金This work was supported in part by the National Science and Technology Council of Taiwan,under Contract NSTC 112-2410-H-324-001-MY2.
文摘In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications.Therefore,it is essential to develop effective models for Virtual Machine(VM)allocation and task scheduling in fog computing environments.Effective task scheduling,VM migration,and allocation,altogether optimize the use of computational resources across different fog nodes.This process ensures that the tasks are executed with minimal energy consumption,which reduces the chances of resource bottlenecks.In this manuscript,the proposed framework comprises two phases:(i)effective task scheduling using a fractional selectivity approach and(ii)VM allocation by proposing an algorithm by the name of Fitness Sharing Chaotic Particle Swarm Optimization(FSCPSO).The proposed FSCPSO algorithm integrates the concepts of chaos theory and fitness sharing that effectively balance both global exploration and local exploitation.This balance enables the use of a wide range of solutions that leads to minimal total cost and makespan,in comparison to other traditional optimization algorithms.The FSCPSO algorithm’s performance is analyzed using six evaluation measures namely,Load Balancing Level(LBL),Average Resource Utilization(ARU),total cost,makespan,energy consumption,and response time.In relation to the conventional optimization algorithms,the FSCPSO algorithm achieves a higher LBL of 39.12%,ARU of 58.15%,a minimal total cost of 1175,and a makespan of 85.87 ms,particularly when evaluated for 50 tasks.
文摘The demand for cloud computing has increased manifold in the recent past.More specifically,on-demand computing has seen a rapid rise as organizations rely mostly on cloud service providers for their day-to-day computing needs.The cloud service provider fulfills different user requirements using virtualization-where a single physical machine can host multiple VirtualMachines.Each virtualmachine potentially represents a different user environment such as operating system,programming environment,and applications.However,these cloud services use a large amount of electrical energy and produce greenhouse gases.To reduce the electricity cost and greenhouse gases,energy efficient algorithms must be designed.One specific area where energy efficient algorithms are required is virtual machine consolidation.With virtualmachine consolidation,the objective is to utilize the minimumpossible number of hosts to accommodate the required virtual machines,keeping in mind the service level agreement requirements.This research work formulates the virtual machine migration as an online problem and develops optimal offline and online algorithms for the single host virtual machine migration problem under a service level agreement constraint for an over-utilized host.The online algorithm is analyzed using a competitive analysis approach.In addition,an experimental analysis of the proposed algorithm on real-world data is conducted to showcase the improved performance of the proposed algorithm against the benchmark algorithms.Our proposed online algorithm consumed 25%less energy and performed 43%fewer migrations than the benchmark algorithms.
文摘Virtualization is the backbone of cloud computing,which is a developing and widely used paradigm.Byfinding and merging identical memory pages,memory deduplication improves memory efficiency in virtualized systems.Kernel Same Page Merging(KSM)is a Linux service for memory pages sharing in virtualized environments.Memory deduplication is vulnerable to a memory disclosure attack,which uses covert channel establishment to reveal the contents of other colocated virtual machines.To avoid a memory disclosure attack,sharing of identical pages within a single user’s virtual machine is permitted,but sharing of contents between different users is forbidden.In our proposed approach,virtual machines with similar operating systems of active domains in a node are recognised and organised into a homogenous batch,with memory deduplication performed inside that batch,to improve the memory pages sharing efficiency.When compared to memory deduplication applied to the entire host,implementation details demonstrate a significant increase in the number of pages shared when memory deduplication applied batch-wise and CPU(Central processing unit)consumption also increased.
文摘Cloud data centers face the largest energy consumption.In order to save energy consumption in cloud data centers,cloud service providers adopt a virtual machine migration strategy.In this paper,we propose an efficient virtual machine placement strategy(VMP-SI)based on virtual machine selection and integration.Our proposed VMP-SI strategy divides the migration process into three phases:physical host state detection,virtual machine selection and virtual machine placement.The local regression robust(LRR)algorithm and minimum migration time(MMT)policy are individual used in the first and section phase,respectively.Then we design a virtual machine migration strategy that integrates the process of virtual machine selection and placement,which can ensure a satisfactory utilization efficiency of the hardware resources of the active physical host.Experimental results show that our proposed method is better than the approach in Cloudsim under various performance metrics.
文摘Current orchestration and choreography process engines only serve with dedicate process languages.To solve these problems,an Event-driven Process Execution Model(EPEM) was developed.Formalization and mapping principles of the model were presented to guarantee the correctness and efficiency for process transformation.As a case study,the EPEM descriptions of Web Services Business Process Execution Language(WS-BPEL) were represented and a Process Virtual Machine(PVM)-OncePVM was implemented in compliance with the EPEM.
基金Supported by the National Natural Science Foundation of China (90104005, 60373087, 60473023) and Network and Information Security Key Laboratory Program of Ministry of Education of China
文摘This paper interprets the essence of XEN and hardware virtualization technology, which make the virtual machine technology become the focus of people's attention again because of its impressive performance. The security challenges of XEN are mainly researched from the pointes of view: security bottleneck, security isolation and share, life-cycle, digital copyright protection, trusted virtual machine and managements, etc. These security problems significantly affect the security of the virtual machine system based on XEN. At the last, these security measures are put forward, which will be a useful instruction on enhancing XEN security in the future.
基金supported by the National Natural Science Foundation of China(6120235461272422)the Scientific and Technological Support Project(Industry)of Jiangsu Province(BE2011189)
文摘Cloud computing represents a novel computing model in the contemporary technology world. In a cloud system, the com- puting power of virtual machines (VMs) and network status can greatly affect the completion time of data intensive tasks. How- ever, most of the current resource allocation policies focus only on network conditions and physical hosts. And the computing power of VMs is largely ignored. This paper proposes a comprehensive resource allocation policy which consists of a data intensive task scheduling algorithm that takes account of computing power of VMs and a VM allocation policy that considers bandwidth between storage nodes and hosts. The VM allocation policy includes VM placement and VM migration algorithms. Related simulations show that the proposed algorithms can greatly reduce the task comple- tion time and keep good load balance of physical hosts at the same time.
基金Project(61272148) supported by the National Natural Science Foundation of ChinaProject(20120162110061) supported by the Doctoral Programs of Ministry of Education of China+1 种基金Project(CX2014B066) supported by the Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(2014zzts044) supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the energy consumption and(processor) resource utilization, is proposed. In TESA, according to load, hosts in data centers are divided into four classes, that is,host with light load, host with proper load, host with middle load and host with heavy load. By defining TESA, VMs on lightly loaded host or VMs on heavily loaded host are migrated to another host with proper load; VMs on properly loaded host or VMs on middling loaded host are kept constant. Then, based on the TESA, five kinds of VM selection policies(minimization of migrations policy based on TESA(MIMT), maximization of migrations policy based on TESA(MAMT), highest potential growth policy based on TESA(HPGT), lowest potential growth policy based on TESA(LPGT) and random choice policy based on TESA(RCT)) are presented, and MIMT is chosen as the representative policy through experimental comparison. Finally, five research directions are put forward on future energy management. The results of simulation indicate that, as compared with single threshold(ST) algorithm and minimization of migrations(MM) algorithm, MIMT significantly improves the energy efficiency in data centers.
基金Supported by the National Program on Key Basic Re-search Project of China (G1999035801)
文摘With analysis of limitations Trusted Computing Group (TCG) has encountered, we argued that virtual machine monitor (VMM) is the appropriate architecture for implementing TCG specification. Putting together the VMM architecture, TCG hardware and application-oriented "thin" virtual machine (VM), Trusted VMM-based security architecture is present in this paper with the character of reduced and distributed trusted computing base (TCB). It provides isolation and integrity guarantees based on which general security requirements can be satisfied.
基金the National Key Research and Development Program of China(No.2017YFC0212100)National High-tech R&D Program of China(No.2015AA015308).
文摘With the rapid development of big data and artificial intelligence(AI),the cloud platform architecture system is constantly developing,optimizing,and improving.As such,new applications,like deep computing and high-performance computing,require enhanced computing power.To meet this requirement,a non-uniform memory access(NUMA)configuration method is proposed for the cloud computing system according to the affinity,adaptability,and availability of the NUMA architecture processor platform.The proposed method is verified based on the test environment of a domestic central processing unit(CPU).
基金Acknowledgements This work was supported by National Key Basic Research and Development Plan (973 Plan) of China (No. 2007CB310900) and National Natural Science Foundation of China (No. 90612018, 90715030 and 60970008).
文摘At present,there are few security models which control the communication between virtual machines (VMs).Moreover,these models are not applicable to multi-level security (MLS).In order to implement mandatory access control (MAC) and MLS in virtual machine system,this paper designs Virt-BLP model,which is based on BLP model.For the distinction between virtual machine system and non-virtualized system,we build elements and security axioms of Virt-BLP model by modifying those of BLP.Moreover,comparing with BLP,the number of state transition rules of Virt-BLP is reduced accordingly and some rules can only be enforced by trusted subject.As a result,Virt-BLP model supports MAC and partial discretionary access control (DAC),well satisfying the requirement of MLS in virtual machine system.As space is limited,the implementation of our MAC framework will be shown in a continuation.
文摘In recent years,vehicular cloud computing(VCC)has gained vast attention for providing a variety of services by creating virtual machines(VMs).These VMs use the resources that are present in modern smart vehicles.Many studies reported that some of these VMs hosted on the vehicles are overloaded,whereas others are underloaded.As a circumstance,the energy consumption of overloaded vehicles is drastically increased.On the other hand,underloaded vehicles are also drawing considerable energy in the underutilized situation.Therefore,minimizing the energy consumption of the VMs that are hosted by both overloaded and underloaded is a challenging issue in the VCC environment.The proper and efcient utilization of the vehicle’s resources can reduce energy consumption signicantly.One of the solutions is to improve the resource utilization of underloaded vehicles by migrating the over-utilized VMs of overloaded vehicles.On the other hand,a large number of VM migrations can lead to wastage of energy and time,which ultimately degrades the performance of the VMs.This paper addresses the issues mentioned above by introducing a resource management algorithm,called resource utilization-aware VM migration(RU-VMM)algorithm,to distribute the loads among the overloaded and underloaded vehicles,such that energy consumption is minimized.RU-VMM monitors the trend of resource utilization to select the source and destination vehicles within a predetermined threshold for the process of VM migration.It ensures that any vehicles’resource utilization should not exceed the threshold before or after the migration.RU-VMM also tries to avoid unnecessary VM migrations between the vehicles.RU-VMM is extensively simulated and tested using nine datasets.The results are carried out using three performance metrics,namely number of nal source vehicles(nfsv),percentage of successful VM migrations(psvmm)and percentage of dropped VM migrations(pdvmm),and compared with threshold-based algorithm(i.e.,threshold)and cumulative sum(CUSUM)algorithm.The comparisons show that the RU-VMM algorithm performs better than the existing algorithms.RU-VMM algorithm improves 16.91%than the CUSUM algorithm and 71.59%than the threshold algorithm in terms of nfsv,and 20.62%and 275.34%than the CUSUM and threshold algorithms in terms of psvmm.
文摘Quantitative security metrics are desirable for measuring the performance of information security controls. Security metrics help to make functional and business decisions for improving the performance and cost of the security controls. However, defining enterprise-level security metrics has already been listed as one of the hard problems in the Info Sec Research Council's hard problems list. Almost all the efforts in defining absolute security metrics for the enterprise security have not been proved fruitful. At the same time, with the maturity of the security industry, there has been a continuous emphasis from the regulatory bodies on establishing measurable security metrics. This paper addresses this need and proposes a relative security metric model that derives three quantitative security metrics named Attack Resiliency Measure(ARM), Performance Improvement Factor(PIF), and Cost/Benefit Measure(CBM) for measuring the performance of the security controls. For the effectiveness evaluation of the proposed security metrics, we took the secure virtual machine(VM) migration protocol as the target of assessment. The virtual-ization technologies are rapidly changing the landscape of the computing world. Devising security metrics for virtualized environment is even more challenging. As secure virtual machine migration is an evolving area and no standard protocol is available specifically for secure VM migration. This paper took the secure virtual machine migration protocol as the target of assessment and applied the proposed relative security metric model for measuring the Attack Resiliency Measure, Performance Improvement Factor, and Cost/Benefit Measure of the secure VM migration protocol.
基金supported by the National Natural Science Foundation of China(61002011)the National High Technology Research and Development Program of China(863 Program)(2013AA013303)+1 种基金the Fundamental Research Funds for the Central Universities(2013RC1104)the Open Fund of the State Key Laboratory of Software Development Environment(SKLSDE-2009KF-2-08)
文摘In the cloud data centers,how to map virtual machines(VMs) on physical machines(PMs) to reduce the energy consumption is becoming one of the major issues,and the existing VM scheduling schemes are mostly to reduce energy consumption by optimizing the utilization of physical servers or network elements.However,the aggressive consolidation of these resources may lead to network performance degradation.In view of this,this paper proposes a two-stage VM scheduling scheme:(1) We propose a static VM placement scheme to minimize the number of activating PMs and network elements to reduce the energy consumption;(2) In the premise of minimizing the migration costs,we propose a dynamic VM migration scheme to minimize the maximum link utilization to improve the network performance.This scheme makes a tradeoff between energy efficiency and network performance.We design a new twostage heuristic algorithm for a solution,and the simulations show that our solution achieves good results.
基金supported by the National Natural Science Foundation of China (NSFC) (No. 61272200, 10805019)the Program for Excellent Young Teachers in Higher Education of Guangdong, China (No. Yq2013012)+2 种基金the Fundamental Research Funds for the Central Universities (2015ZJ010)the Special Support Program of Guangdong Province (201528004)the Pearl River Science & Technology Star Project (201610010046)
文摘With the advent of the era of cloud computing, the high energy consumption of cloud computing data centers has become a prominent problem, and how to reduce the energy consumption of cloud computing data center and improve the efficiency of data center has become the research focus of researchers all the world. In a cloud environment, virtual machine consolidation(VMC) is an effective strategy that can improve the energy efficiency. However, at the same time, in the process of virtual machine consolidation, we need to deal with the tradeoff between energy consumption and excellent service performance to meet service level agreement(SLA). In this paper, we propose a new virtual machine consolidation framework for achieving better energy efficiency-Improved Underloaded Decision(IUD) algorithm and Minimum Average Utilization Difference(MAUD) algorithm. Finally, based on real workload data on Planet Lab, experiments have been done with the cloud simulation platform Cloud Sim. The experimental result shows that the proposed algorithm can reduce the energy consumption and SLA violation of data centers compared with existing algorithms, improving the energy efficiency of data centers.
基金supported by the National Research Foundation (NRF) of Korea through contract N-14-NMIR06
文摘Cloud computing is becoming a key factor in the market day by day. Therefore, many companies are investing or going to invest in this sector for development of large data centers. These data centers not only consume more energy but also produce greenhouse gases. Because of large amount of power consumption, data center providers go for different types of power generator to increase the profit margin which indirectly affects the environment. Several studies are carried out to reduce the power consumption of a data center. One of the techniques to reduce power consumption is virtualization. After several studies, it is stated that hardware plays a very important role. As the load increases, the power consumption of the CPU is also increased. Therefore, by extending the study of virtualization to reduce the power consumption, a hardware-based algorithm for virtual machine provisioning in a private cloud can significantly improve the performance by considering hardware as one of the important factors.
基金supported by The National Natural Science Foundation for Young Scientists of China under Grant No.61303263the Jiangsu Provincial Research Foundation for Basic Research(Natural Science Foundation)under Grant No.BK20150201+4 种基金the Scientific Research Key Project of Beijing Municipal Commission of Education under Grant No.KZ201210015015Project Supported by the National Natural Science Foundation of China(Grant No.61370140)the Scientific Research Common Program of the Beijing Municipal Commission of Education(Grant No.KMKM201410015006)The National Science Foundation of China under Grant Nos.61232016 and U1405254and the PAPD fund
文摘This paper sums up four security factors after analyzing co-residency threats caused by the special multitenant environment in the cloud.To secure the factors,a multiway dynamic trust chain transfer model was proposed on the basis of a measurement interactive virtual machine and current behavior to protect the integrity of the system.A trust chain construction module is designed in a virtual machine monitor.Through dynamic monitoring,it achieves the purpose of transferring integrity between virtual machine.A cloud system with a trust authentication function is implemented on the basis of the model,and its practicability is shown.
基金This work was supported by Sichuan science and technology program(2019YFG0212)China Postdoctoral Science Foundation(2019M653401).
文摘In the paper,we investigate the heterogeneous resource allocation scheme for virtual machines with slicing technology in the 5G/B5G edge computing environment.In general,the different slices for different task scenarios exist in the same edge layer synchronously.A lot of researches reveal that the virtual machines of different slices indicate strong heterogeneity with different reserved resource granularity.In the condition,the allocation process is a NP hard problem and difficult for the actual demand of the tasks in the strongly heterogeneous environment.Based on the slicing and container concept,we propose the resource allocation scheme named Two-Dimension allocation and correlation placement Scheme(TDACP).The scheme divides the resource allocation and management work into three stages in this paper:In the first stage,it designs reasonably strategy to allocate resources to different task slices according to demand.In the second stage,it establishes an equivalent relationship between the virtual machine reserved resource capacity and the Service-Level Agreement(SLA)of the virtual machine in different slices.In the third stage,it designs a placement optimization strategy to schedule the equivalent virtual machines in the physical servers.Thus,it is able to establish a virtual machine placement strategy with high resource utilization efficiency and low time cost.The simulation results indicate that the proposed scheme is able to suppress the problem of uneven resource allocation which is caused by the pure preemptive scheduling strategy.It adjusts the number of equivalent virtual machines based on the SLA range of system parameter,and reduces the SLA probability of physical servers effectively based on resource utilization time sampling series linear.The scheme is able to guarantee resource allocation and management work orderly and efficiently in the edge datacenter slices.
文摘Cloud Computing provides various services to the customer in aflex-ible and reliable manner.Virtual Machines(VM)are created from physical resources of the data center for handling huge number of requests as a task.These tasks are executed in the VM at the data center which needs excess hosts for satis-fying the customer request.The VM migration solves this problem by migrating the VM from one host to another host and makes the resources available at any time.This process is carried out based on various algorithms which follow a pre-defined capacity of source VM leads to the capacity issue at the destination VM.The proposed VM migration technique performs the migration process based on the request of the requesting host machine.This technique can perform in three ways namely single VM migration,Multiple VM migration and Cluster VM migration.Common Deployment Manager(CDM)is used to support through negotiation that happens across the source host and destination host for providing the high quality service to their customer.The VM migration requests are handled with an exposure of the source host capabilities.The proposed analysis also uses the retired instructions with execution by the hypervisor to achieve high reliabil-ity.The objective of the proposed technique is to perform a VM migration process based on the prior knowledge of the resource availability in the target VM.