In this paper,we built a robot training platform using virtual simulation software,and the robot assembly,handling,and palletizing were realized.The workstation includes an industrial robot,gas control unit,track func...In this paper,we built a robot training platform using virtual simulation software,and the robot assembly,handling,and palletizing were realized.The workstation includes an industrial robot,gas control unit,track function module,assembly function module,palletizing function module,vision module,etc.,and robot movement is achieved through language programming.The platform provides conditions for the practical ability training of application-oriented talents.展开更多
Manufacturing enterprises play an important role in improving the economic environment of a country.Today,the capability to produce high quality products with shorter delivery time and the ability to produce according...Manufacturing enterprises play an important role in improving the economic environment of a country.Today,the capability to produce high quality products with shorter delivery time and the ability to produce according to the diverse customer requirements has become the characteristics of successful manufacturing industries. Application of intelligent manufacturing systems and Computer integrated manufacturing (CIM) are the most effective methods for overcoming the issues faced by present day manufactures while retaining the employment level and revenue of a country in today’s highly competitive global market. With the developments taking place in CIM and its related technologies,the application of CIM in manufacturing enterprises has become a reality from the dream. This paper highlights the historical developments towards automation and the need for CIM systems. Furthermore,it analyses some new terms such as agile manufacturing,digital manufacturing,agent-based manufacturing and others,which have been emerging recently,and argues all these new technologies are the subsystems of CIM. In addition,this paper provides a new direction in CIM to fulfil the emerging challenges in today’s global market and to satisfy the emerging need of virtual enterprises in the form of Virtual CIM.展开更多
As energy efficiency is one of the key essentials towards sustainability, the development of an energy-resource efficient manufacturing system is among the great challenges facing the current industry. Meanwhile, the ...As energy efficiency is one of the key essentials towards sustainability, the development of an energy-resource efficient manufacturing system is among the great challenges facing the current industry. Meanwhile, the availability of advanced technological innovation has created more complex manufacturing systems that involve a large variety of processes and machines serving different functions. To extend the limited knowledge on energy-efficient scheduling, the research presented in this paper attempts to model the production schedule at an operation process by considering the balance of energy consumption reduction in production, production work flow (productivity) and quality. An innovative systematic approach to manufacturing energy-resource efficiency is proposed with the virtual simulation as a predictive modelling enabler, which provides real-time manufacturing monitoring, virtual displays and decision-makings and consequentially an analytical and multidimensional correlation analysis on interdependent relationships among energy consumption, work flow and quality errors. The regression analysis results demonstrate positive relationships between the work flow and quality errors and the work flow and energy consumption. When production scheduling is controlled through optimization of work flow, quality errors and overall energy consumption, the energy-resource efficiency can be achieved in the production. Together, this proposed multidimensional modelling and analysis approach provides optimal conditions for the production scheduling at the manufacturing system by taking account of production quality, energy consumption and resource efficiency, which can lead to the key competitive advantages and sustainability of the system operations in the industry.展开更多
In order to improve efficiency of virtual enterprise, a manufacturing grid and multilevel manufacturing system of virtual enterprise is built up. When selecting member enterprises and task assignment based on the manu...In order to improve efficiency of virtual enterprise, a manufacturing grid and multilevel manufacturing system of virtual enterprise is built up. When selecting member enterprises and task assignment based on the manufacturing grid, key activities are assigned to the suitable critical member enterprises by task decomposition, enterprise node searching and characteristic matching of manufacturing resources according to the characteristic matching strategy. By task merger, some ordinary activities are merged with corresponding key activities and assigned to corresponding critical member enterprises. However, the other ordinary activities are assigned to the related ordinary member enterprises with enterprise node searching and characteristic matching of manufacturing resources. Finally, an example of developing the artificial hip joint in the virtual enterprise is used to demonstrate that efficiency of the virtual enterprise is improved by using the manufacturing grid and the proposed strategies for member enterprise selection and task assignment.展开更多
Respecting the on-time<span><span><span> </span></span></span><span><span><span>delivery (OTD) for manufacturing orders is mandatory. However, for non-JIT Batch &a...Respecting the on-time<span><span><span> </span></span></span><span><span><span>delivery (OTD) for manufacturing orders is mandatory. However, for non-JIT Batch & Queue Push-manufacturing systems, the compliance of OTD is not intrinsically guaranteed.</span></span></span><span><span><span> As an OTD related manufacturing theory is largely missing it is crucial to understand and formalize the necessary conditions of OTD compliance for complex production environments for maximum exploitation of the production capacity. This paper evaluates the conditions of post-optimality while being OTD compliant for production systems, which are characterized </span></span></span><span><span><span>by</span></span></span><span><span><span> stochastic order rate and a deterministic product-mix. Instead of applying discrete event simulation to explore the real case-by-case order scheduling optimization for OTD compliance, a Cartesian approach is followed. This enables to define theoretically the solution space of order backlog for OTD, which contributes to develo</span></span></span><span><span><span>ping</span></span></span><span><span><span> further manufacturing theory. At the base stands the recently defined new concept of virtual manufacturing elasticity by reducing lead-time to increase virtually production capacity. The result has led to defin</span></span></span><span><span><span>ing</span></span></span><span><span><span> additional two corollaries to the OTD theorem, which sets up basic OTD theory. Apart from defining the post-optimal requirements to guarantee for orders at least a weak solution for OTD compliance, this paper reveals that for a deterministic product-mix a non-ergodic order arrival rate can be rescheduled into an ergodic order input rate to the shopfloor if the virtual elasticity </span></span></span><span><span><span><span><span style="font-size:10.0pt;font-family:;" "=""><span style="font-size:10.0pt;font-family:;" "=""><img src="Edit_e545052a-10c6-459e-aa8a-2bccefd4a1a7.png" alt="" /></span></span></span><i><span>T</span></i><span> is large enough</span></span></span></span><span><span><span>, </span></span></span><span><span><span>hence the importance of having fast and flexible production lines.</span></span></span>展开更多
Virtual reality (VR) is a rapidly developing technology that has a wide spectrum of industrial and commercial applications. Networked (distributed or shared) virtual environments (VE) are of growing interest to modern...Virtual reality (VR) is a rapidly developing technology that has a wide spectrum of industrial and commercial applications. Networked (distributed or shared) virtual environments (VE) are of growing interest to modern manufacturing industry; a dominating use of networked virtual manufacturing environments (VMEs) is on-line visualisation and collaborative control of 3D information. This has to be supported by real-time data transfer. To meet a broad range of common requirements for Internet-based VE communications, particularly for virtual manufacturing and collaborative design and control, this paper presents a networked virtual environment system that is designed to support networked virtual design and manufacturing. The system is implemented with manufacturing message specification (MMS) standards so as to integrate a range of manufacturing services into networked VEs over the Internet.展开更多
Virtual manufacturing (VM) is an integrated synthetic manufacturing environment exercised to enhance all levels of decision and control in a manufacturing networked enterprise. Autonomous manufacturing island (AMI) is...Virtual manufacturing (VM) is an integrated synthetic manufacturing environment exercised to enhance all levels of decision and control in a manufacturing networked enterprise. Autonomous manufacturing island (AMI) is an active, dynamic and flexible production cell in the domain of technology, organization and management. This paper explains the concept of VM, proposes the architecture of VM based on AMI and discusses its characteristics. Lastly, a pilot system of virtual manufacturing based on AMI is introduced.展开更多
In order to improve efficiency of developing customized artificial joint, a virtual enterprise is organized based on the manufacturing grid. The application-oriented framework of the virtual enterprise is created for ...In order to improve efficiency of developing customized artificial joint, a virtual enterprise is organized based on the manufacturing grid. The application-oriented framework of the virtual enterprise is created for organization of the virtual enterprise. The manufacturing system of the virtual enterprise is built up based on the exterior grid and manufacturing subsystems of member enterprises are set up based on the interior grid. Furthermore, according to characteristic matching of manufacturing resources, the scheduling flow is studied in detail and the related scheduling strategies are established. The scheduling procedure is divided into distributed scheduling stage and local scheduling stage.Based on the manufacturing grid, the organization of the virtual enterprise for customized artificial joint and the corresponding scheduling strategies can be utilized to shorten developing cycle and reduce produce cost.展开更多
In this paper we briefly describe our effort in developing standards for immersive display interfaces in virtual manufacturing.This work is being conducted in collaboration with the National Institute of Standards and...In this paper we briefly describe our effort in developing standards for immersive display interfaces in virtual manufacturing.This work is being conducted in collaboration with the National Institute of Standards and Technology(NIST).First we review the concept of virtual manufacturing,discuss its scope and lay the contextual foundation for describing our application.Next we describe a prototype implementation of immersive display interfaces in virtual manufacturing.This prototype is based on processing the output of a factory simulation model.Finally we describe the standards emerging from this prototype.展开更多
The concept of virtual manufacturing and measuring cell (VMMC) is proposed, the systematic architecture of the VMMC is established and two key problems: the error fusion in machining and the reconstructable modeling o...The concept of virtual manufacturing and measuring cell (VMMC) is proposed, the systematic architecture of the VMMC is established and two key problems: the error fusion in machining and the reconstructable modeling of workpiece during virtual manufacturing and measuring, are discussed. An actual VMMC is presented as an example and its modularized frame is introduced.展开更多
Virtual reality(VR)has been widely used in various manufacturing industries,and VR-based virtual manufacturing has received significant attention in the current intelligent manufacturing era.Digital human models(DHMs)...Virtual reality(VR)has been widely used in various manufacturing industries,and VR-based virtual manufacturing has received significant attention in the current intelligent manufacturing era.Digital human models(DHMs)are essential for virtual manufacturing applications.Additionally,researching new applications of DHMs has developed into an important academic research field.This paper aims to identify the applications and research trends of DHMs in the manufacturing industry and to provide a reference for the continued development of virtual manufacturing and DHMs.We selected a total of 49 related articles from a large number of articles published between 2014 and 2019.The applications of DHMs in the manufacturing industry are analyzed from different perspectives and various relevant technical limitations are discussed.The results indicate that the applications of DHMs differ significantly between different types of fields.The automotive industry is the main application field for DHMs,and assembly/maintenance simulations and evaluations are the main application types.Additionally,there are still some limitations in the establishment of virtual environments,motion control,and DHM evaluation that should be addressed.Finally,research trends in the application of DHMs are illustrated and discussed,including the planning and assessment of human-robot collaboration systems,the combination of DHMs and augmented reality,and improved motion planning for DHMs.In summary,the application of DHMs can improve the realism and effectiveness of virtual manufacturing,and DHMs will be more widely and deeply studied and applied in various manufacturing industries in the near future.展开更多
In this paper,an experiment method for the Manufacturing Grid application system development in the single personal computer environment is proposed.The characteristic of the proposed method is constructing a full pro...In this paper,an experiment method for the Manufacturing Grid application system development in the single personal computer environment is proposed.The characteristic of the proposed method is constructing a full prototype Manufactur- ing Grid application system which is hosted on a single personal computer with the virtual machine technology.Firstly,it builds all the Manufacturing Grid physical resource nodes on an abstraction layer of a single personal computer with the virtual machine tech- nology.Secondly,all the virtual Manufacturing Grid resource nodes will be connected with virtual network and the application software will be deployed on each Manufacturing Grid nodes.Then,we can obtain a prototype Manufacturing Grid application system which is working in the single personal computer,and can carry on the experiment on this foundation.Compared with the known experiment methods for the Manufacturing Grid application system development,the proposed method has the advantages of the known methods,such as cost inexpensively,operation simple,and can get the confidence experiment result easily.The Manu- facturing Grid application system constructed with the proposed method has the high scalability,stability and reliability.It is can be migrated to the real application environment rapidly.展开更多
Virtual organization is a new production patter and a principal part in advanced manufacturing systems such as agile manufacturing. Manufacturability evaluation is the necessary condition to form the virtual organizat...Virtual organization is a new production patter and a principal part in advanced manufacturing systems such as agile manufacturing. Manufacturability evaluation is the necessary condition to form the virtual organization. A new manufacturability evaluation approach is described in this paper, which is carried out based on every process feature under the double-layer model of manufacturing resources proposed by authors. The manufacturing resources that build up the virtual organization are selected according to the results of manufacturability evaluation.展开更多
This paper focuses on agile manufacturing of complex moulds for punch devices and a decision analysis for the key link of agile manufacturing resources integration—the virtual company in a multivariate criterion univ...This paper focuses on agile manufacturing of complex moulds for punch devices and a decision analysis for the key link of agile manufacturing resources integration—the virtual company in a multivariate criterion universe of discourse. On the basis of presenting an agile manufacturing model of complex moulds for punch devices, we give a fuzzy decision method of two level judgment space of synthetic decision and several key problems which the production of complex moulds for punch devices must face under the architecture hierarchy of agile manufacturing. We give a fuzzy decision method of two level judgment space of synthetic decision and several key problems which the production of complex parts must face under the architecture hierarchy of agile manufacturing.展开更多
Virtual manufacturing is one of the key components of Industry 4.0,the fourth industrial revolution,in improving manufacturing processes.Virtual manufacturing enables manufacturers to optimize their production process...Virtual manufacturing is one of the key components of Industry 4.0,the fourth industrial revolution,in improving manufacturing processes.Virtual manufacturing enables manufacturers to optimize their production processes using real-time data from sensors and other connected devices in Industry 4.0.Web-based virtual manufacturing platforms are a critical component of Industry 4.0,enabling manufacturers to design,test,and optimize their processes collaboratively and efficiently.In Industry 4.0,radio frequency identification(RFID)technology is used to provide real-time visibility and control of the supply chain as well as to enable the automation of various manufacturing processes.Big data analytics can be used in conjunction with virtual manufacturing to provide valuable insights and optimize production processes in Industry 4.0.Artificial intelligence(AI)and virtual manufacturing have the potential to enhance the effectiveness,consistency,and adaptability of manufacturing processes,resulting in faster production cycles,better-quality products,and lower prices.Recent developments in the application of virtual manufacturing systems to digital manufacturing platforms from different perspectives,such as the Internet of things,big data analytics,additive manufacturing,autonomous robots,cybersecurity,and RFID technology in Industry 4.0,are discussed in this study to analyze and develop the part manufacturing process in Industry 4.0.The limitations and advantages of virtual manufacturing systems in Industry 4.0 are discussed,and future research projects are also proposed.Thus,productivity in the part manufacturing process can be enhanced by reviewing and analyzing the applications of virtual manufacturing in Industry 4.0.展开更多
基金2023 Autonomous Region Level College Students Innovation and Entrepreneurship Training Plan Project:Virtual and Real Integration of Industrial Robot Training Room(Project number:S202311546109)2023 Industry-University Cooperative Education Project of the Ministry of Education(Project number:230801212255027)+2 种基金2023 Guangxi Higher Education Undergraduate Teaching Reform Project:Research and Practice of Mixed Teaching Reform of Industrial Robot Operation and Programming Based on the Integration of Industry and Education(Project number:2023JGA362)2022 Guangxi Vocational Education Teaching Reform Research Project:Construction and Practice of Integrated Curriculum Resources for Robot Engineering Majors Based on Industrial College(Project number:GXGZJG2022B076)2022 Guangxi Science and Technology Normal University Research Fund Project:Path Planning of Loading and Unloading Robot based on Optimal Energy Consumption(Project number:GXKS2022QN006).
文摘In this paper,we built a robot training platform using virtual simulation software,and the robot assembly,handling,and palletizing were realized.The workstation includes an industrial robot,gas control unit,track function module,assembly function module,palletizing function module,vision module,etc.,and robot movement is achieved through language programming.The platform provides conditions for the practical ability training of application-oriented talents.
文摘Manufacturing enterprises play an important role in improving the economic environment of a country.Today,the capability to produce high quality products with shorter delivery time and the ability to produce according to the diverse customer requirements has become the characteristics of successful manufacturing industries. Application of intelligent manufacturing systems and Computer integrated manufacturing (CIM) are the most effective methods for overcoming the issues faced by present day manufactures while retaining the employment level and revenue of a country in today’s highly competitive global market. With the developments taking place in CIM and its related technologies,the application of CIM in manufacturing enterprises has become a reality from the dream. This paper highlights the historical developments towards automation and the need for CIM systems. Furthermore,it analyses some new terms such as agile manufacturing,digital manufacturing,agent-based manufacturing and others,which have been emerging recently,and argues all these new technologies are the subsystems of CIM. In addition,this paper provides a new direction in CIM to fulfil the emerging challenges in today’s global market and to satisfy the emerging need of virtual enterprises in the form of Virtual CIM.
基金Supported by the EU 7th Framework ICT Programme under Euro Energest Project(Contract No.288102)
文摘As energy efficiency is one of the key essentials towards sustainability, the development of an energy-resource efficient manufacturing system is among the great challenges facing the current industry. Meanwhile, the availability of advanced technological innovation has created more complex manufacturing systems that involve a large variety of processes and machines serving different functions. To extend the limited knowledge on energy-efficient scheduling, the research presented in this paper attempts to model the production schedule at an operation process by considering the balance of energy consumption reduction in production, production work flow (productivity) and quality. An innovative systematic approach to manufacturing energy-resource efficiency is proposed with the virtual simulation as a predictive modelling enabler, which provides real-time manufacturing monitoring, virtual displays and decision-makings and consequentially an analytical and multidimensional correlation analysis on interdependent relationships among energy consumption, work flow and quality errors. The regression analysis results demonstrate positive relationships between the work flow and quality errors and the work flow and energy consumption. When production scheduling is controlled through optimization of work flow, quality errors and overall energy consumption, the energy-resource efficiency can be achieved in the production. Together, this proposed multidimensional modelling and analysis approach provides optimal conditions for the production scheduling at the manufacturing system by taking account of production quality, energy consumption and resource efficiency, which can lead to the key competitive advantages and sustainability of the system operations in the industry.
文摘In order to improve efficiency of virtual enterprise, a manufacturing grid and multilevel manufacturing system of virtual enterprise is built up. When selecting member enterprises and task assignment based on the manufacturing grid, key activities are assigned to the suitable critical member enterprises by task decomposition, enterprise node searching and characteristic matching of manufacturing resources according to the characteristic matching strategy. By task merger, some ordinary activities are merged with corresponding key activities and assigned to corresponding critical member enterprises. However, the other ordinary activities are assigned to the related ordinary member enterprises with enterprise node searching and characteristic matching of manufacturing resources. Finally, an example of developing the artificial hip joint in the virtual enterprise is used to demonstrate that efficiency of the virtual enterprise is improved by using the manufacturing grid and the proposed strategies for member enterprise selection and task assignment.
文摘Respecting the on-time<span><span><span> </span></span></span><span><span><span>delivery (OTD) for manufacturing orders is mandatory. However, for non-JIT Batch & Queue Push-manufacturing systems, the compliance of OTD is not intrinsically guaranteed.</span></span></span><span><span><span> As an OTD related manufacturing theory is largely missing it is crucial to understand and formalize the necessary conditions of OTD compliance for complex production environments for maximum exploitation of the production capacity. This paper evaluates the conditions of post-optimality while being OTD compliant for production systems, which are characterized </span></span></span><span><span><span>by</span></span></span><span><span><span> stochastic order rate and a deterministic product-mix. Instead of applying discrete event simulation to explore the real case-by-case order scheduling optimization for OTD compliance, a Cartesian approach is followed. This enables to define theoretically the solution space of order backlog for OTD, which contributes to develo</span></span></span><span><span><span>ping</span></span></span><span><span><span> further manufacturing theory. At the base stands the recently defined new concept of virtual manufacturing elasticity by reducing lead-time to increase virtually production capacity. The result has led to defin</span></span></span><span><span><span>ing</span></span></span><span><span><span> additional two corollaries to the OTD theorem, which sets up basic OTD theory. Apart from defining the post-optimal requirements to guarantee for orders at least a weak solution for OTD compliance, this paper reveals that for a deterministic product-mix a non-ergodic order arrival rate can be rescheduled into an ergodic order input rate to the shopfloor if the virtual elasticity </span></span></span><span><span><span><span><span style="font-size:10.0pt;font-family:;" "=""><span style="font-size:10.0pt;font-family:;" "=""><img src="Edit_e545052a-10c6-459e-aa8a-2bccefd4a1a7.png" alt="" /></span></span></span><i><span>T</span></i><span> is large enough</span></span></span></span><span><span><span>, </span></span></span><span><span><span>hence the importance of having fast and flexible production lines.</span></span></span>
文摘Virtual reality (VR) is a rapidly developing technology that has a wide spectrum of industrial and commercial applications. Networked (distributed or shared) virtual environments (VE) are of growing interest to modern manufacturing industry; a dominating use of networked virtual manufacturing environments (VMEs) is on-line visualisation and collaborative control of 3D information. This has to be supported by real-time data transfer. To meet a broad range of common requirements for Internet-based VE communications, particularly for virtual manufacturing and collaborative design and control, this paper presents a networked virtual environment system that is designed to support networked virtual design and manufacturing. The system is implemented with manufacturing message specification (MMS) standards so as to integrate a range of manufacturing services into networked VEs over the Internet.
文摘Virtual manufacturing (VM) is an integrated synthetic manufacturing environment exercised to enhance all levels of decision and control in a manufacturing networked enterprise. Autonomous manufacturing island (AMI) is an active, dynamic and flexible production cell in the domain of technology, organization and management. This paper explains the concept of VM, proposes the architecture of VM based on AMI and discusses its characteristics. Lastly, a pilot system of virtual manufacturing based on AMI is introduced.
文摘In order to improve efficiency of developing customized artificial joint, a virtual enterprise is organized based on the manufacturing grid. The application-oriented framework of the virtual enterprise is created for organization of the virtual enterprise. The manufacturing system of the virtual enterprise is built up based on the exterior grid and manufacturing subsystems of member enterprises are set up based on the interior grid. Furthermore, according to characteristic matching of manufacturing resources, the scheduling flow is studied in detail and the related scheduling strategies are established. The scheduling procedure is divided into distributed scheduling stage and local scheduling stage.Based on the manufacturing grid, the organization of the virtual enterprise for customized artificial joint and the corresponding scheduling strategies can be utilized to shorten developing cycle and reduce produce cost.
文摘In this paper we briefly describe our effort in developing standards for immersive display interfaces in virtual manufacturing.This work is being conducted in collaboration with the National Institute of Standards and Technology(NIST).First we review the concept of virtual manufacturing,discuss its scope and lay the contextual foundation for describing our application.Next we describe a prototype implementation of immersive display interfaces in virtual manufacturing.This prototype is based on processing the output of a factory simulation model.Finally we describe the standards emerging from this prototype.
文摘The concept of virtual manufacturing and measuring cell (VMMC) is proposed, the systematic architecture of the VMMC is established and two key problems: the error fusion in machining and the reconstructable modeling of workpiece during virtual manufacturing and measuring, are discussed. An actual VMMC is presented as an example and its modularized frame is introduced.
基金National Natural Science Foundation of China(51475291).
文摘Virtual reality(VR)has been widely used in various manufacturing industries,and VR-based virtual manufacturing has received significant attention in the current intelligent manufacturing era.Digital human models(DHMs)are essential for virtual manufacturing applications.Additionally,researching new applications of DHMs has developed into an important academic research field.This paper aims to identify the applications and research trends of DHMs in the manufacturing industry and to provide a reference for the continued development of virtual manufacturing and DHMs.We selected a total of 49 related articles from a large number of articles published between 2014 and 2019.The applications of DHMs in the manufacturing industry are analyzed from different perspectives and various relevant technical limitations are discussed.The results indicate that the applications of DHMs differ significantly between different types of fields.The automotive industry is the main application field for DHMs,and assembly/maintenance simulations and evaluations are the main application types.Additionally,there are still some limitations in the establishment of virtual environments,motion control,and DHM evaluation that should be addressed.Finally,research trends in the application of DHMs are illustrated and discussed,including the planning and assessment of human-robot collaboration systems,the combination of DHMs and augmented reality,and improved motion planning for DHMs.In summary,the application of DHMs can improve the realism and effectiveness of virtual manufacturing,and DHMs will be more widely and deeply studied and applied in various manufacturing industries in the near future.
基金Funded by the Open Project in Hubei Digital Manufacturing Key Laboratory under Grant NO.SZ0413the Sunshine Young Project in Wuhan City of China under Grant No.20055003059-5.
文摘In this paper,an experiment method for the Manufacturing Grid application system development in the single personal computer environment is proposed.The characteristic of the proposed method is constructing a full prototype Manufactur- ing Grid application system which is hosted on a single personal computer with the virtual machine technology.Firstly,it builds all the Manufacturing Grid physical resource nodes on an abstraction layer of a single personal computer with the virtual machine tech- nology.Secondly,all the virtual Manufacturing Grid resource nodes will be connected with virtual network and the application software will be deployed on each Manufacturing Grid nodes.Then,we can obtain a prototype Manufacturing Grid application system which is working in the single personal computer,and can carry on the experiment on this foundation.Compared with the known experiment methods for the Manufacturing Grid application system development,the proposed method has the advantages of the known methods,such as cost inexpensively,operation simple,and can get the confidence experiment result easily.The Manu- facturing Grid application system constructed with the proposed method has the high scalability,stability and reliability.It is can be migrated to the real application environment rapidly.
文摘Virtual organization is a new production patter and a principal part in advanced manufacturing systems such as agile manufacturing. Manufacturability evaluation is the necessary condition to form the virtual organization. A new manufacturability evaluation approach is described in this paper, which is carried out based on every process feature under the double-layer model of manufacturing resources proposed by authors. The manufacturing resources that build up the virtual organization are selected according to the results of manufacturability evaluation.
文摘This paper focuses on agile manufacturing of complex moulds for punch devices and a decision analysis for the key link of agile manufacturing resources integration—the virtual company in a multivariate criterion universe of discourse. On the basis of presenting an agile manufacturing model of complex moulds for punch devices, we give a fuzzy decision method of two level judgment space of synthetic decision and several key problems which the production of complex moulds for punch devices must face under the architecture hierarchy of agile manufacturing. We give a fuzzy decision method of two level judgment space of synthetic decision and several key problems which the production of complex parts must face under the architecture hierarchy of agile manufacturing.
文摘Virtual manufacturing is one of the key components of Industry 4.0,the fourth industrial revolution,in improving manufacturing processes.Virtual manufacturing enables manufacturers to optimize their production processes using real-time data from sensors and other connected devices in Industry 4.0.Web-based virtual manufacturing platforms are a critical component of Industry 4.0,enabling manufacturers to design,test,and optimize their processes collaboratively and efficiently.In Industry 4.0,radio frequency identification(RFID)technology is used to provide real-time visibility and control of the supply chain as well as to enable the automation of various manufacturing processes.Big data analytics can be used in conjunction with virtual manufacturing to provide valuable insights and optimize production processes in Industry 4.0.Artificial intelligence(AI)and virtual manufacturing have the potential to enhance the effectiveness,consistency,and adaptability of manufacturing processes,resulting in faster production cycles,better-quality products,and lower prices.Recent developments in the application of virtual manufacturing systems to digital manufacturing platforms from different perspectives,such as the Internet of things,big data analytics,additive manufacturing,autonomous robots,cybersecurity,and RFID technology in Industry 4.0,are discussed in this study to analyze and develop the part manufacturing process in Industry 4.0.The limitations and advantages of virtual manufacturing systems in Industry 4.0 are discussed,and future research projects are also proposed.Thus,productivity in the part manufacturing process can be enhanced by reviewing and analyzing the applications of virtual manufacturing in Industry 4.0.